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ABSTRACT: According to the current IPCC report, climate change will increase the probability of 

occurrence of droughts. Recent contributions at the international level indicate that trade is expected to 

act as an efficient tool to mitigate the adverse effect of future climate conditions, including droughts, on 

agriculture. However, no contribution has focused on the similar capacity of trade within any country yet. 

The U.S. is an obvious choice given that a large number of climate impact studies focus on its agriculture 

and around 90% of the U.S. agricultural trade is domestic. Combining a recent state-to-state trade flow 

dataset with detailed drought records at a fine spatial and temporal resolution, this paper highlights first 

that trade increases as the destination state experiences more drought and inversely in the origin state. 

As a result, the general equilibrium agricultural profit depends on both local and trade partners’ weather 

conditions, including drought. Projections based on future weather data challenge the estimates of the 

current climate impact literature by revealing that trade is expected to act as a $ 14.5 billion adaptation 

tool as it converts the expected profit losses without trade into expected profit gains.  
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I. Introduction 

Recent decades have witnessed changes in weather conditions, including an increase in the frequency 

and intensity of extreme weather events, and the most recent report of the Intergovernmental Panel on 

Climate Change predicts that this trend should continue in the near future (IPCC, 2014). Agriculture, the 

economic sector that is the most sensitive to changes in weather conditions, is expected to be greatly 

affected by such changes, no matter in what country the production takes place (see, for example, 

Mendelsohn et al., 1994; Deschênes and Greenstone, 2007, for the U.S.; Lippert et al., 2009; Moore and 

Lobell, 2014, for Europe, Wang et al., 2009, for China). However, several authors have brought to the fore 

that the international trade of agricultural goods has the capacity to act as a major adaptation mechanism 

to climate change (Reilly and Hohmann, 1993; Rosenzweig and Parry, 1994; Julia and Duchin, 2007; 

Schenker, 2013). Trade theory (Krugman, 1979; Markusen, 1995; Feenstra, 2015) suggests that current 

agricultural production choices reflect current differences in local factor endowments (e.g. soil, climate, 

water access) and that trade takes places based on the current level of complementarity (e.g. crops used 

for animal feeding) or of substitution with local production. However, in the long run new climate 

conditions will have the potential to disrupt current competitive advantages, hence leading to changes in 

production choices and trade patterns. In addition to this long-run change, the expected increase in 

extreme weather events should result in higher yield volatility as well. Reimer and Li (2009) and Ferguson 

and Gars (2017) indicate that short-run production losses following a sudden drought or a flood can be 

substituted for imports (trade creation). Moreover, for the countries traditionally importing from a place 

experiencing that sudden drop in production, the shift to other providers (trade diversion) is a viable 

option too (McCorriston and Sheldon, 1991). 

Yet, it is important to note that the capacity of international trade to cope with expected climate 

changes has been challenged in a recent contribution by Costinot et al. (2016). Based on a vast new 

dataset containing agricultural productivity for million fields around the world, their results show that 
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international trade plays only a minor role in climate mitigation compared to domestic production 

reallocation. Therefore, they expect that new climate conditions will force countries to decide whether 

crops whose yield has fallen need to be relocated within the country or simply imported instead. However, 

their estimates disregard the role and changes in domestic trade flows that crop reallocation and new 

crop prices will induce. This gap is particularly relevant for large countries like the United States where 

agricultural land covers a large amount of its territory (around 40% in 2012) and who are primarily self-

sufficient. For instance, only 8.5% of the U.S. agricultural production is exported and up to 91.2% of its 

national intermediate and final demands are satisfied by local production (World Input-Output Database, 

2016). As a result, it is likely that new climate conditions will bring about larger changes to its domestic 

rather than international trade. Finally, the current White House administration’s tendency to reconsider 

established trade agreements, including those dealing with agricultural commodities and livestock1, 

obliges us to investigate the domestic trade further as the nation’s future food security may increasingly 

rely on it. 

As such, the first objective of this paper is to assess the degree of sensitivity of domestic agricultural 

trade flows to new weather conditions, including drought, the extreme weather event commonly seen as 

the largest threat to agriculture and global food security (Wilhite, 2000). All previous contributions at the 

international level emphasize climate change as changes in long-run temperature or precipitation but they 

miss the role of drought events as well as their future frequency and intensity. The domestic impact of 

droughts and their spatial externalities has been studied through structural modelling approaches such as 

input-output (y Pérez and Barreiro-Hurlé, 2009), computable general equilibrium (Horridge et al., 2005) 

and price-endogenous regional programing (Salami et al., 2009) but, as far as we know, never in a 

structural gravity model (e.g. Anderson and van Wincoop, 2003; Arkolakis et al. 2012; Head and Mayer, 

                                                             
1 For instance, China imposed a 25 percent retaliatory tariffs on American soybeans on July 6, 2018. It led the price 
of the commodity to fall about 17 percent on the decline in the soybean futures market.  
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2014). In addition, the gravity framework has been frequently applied to agricultural trade (see, among 

others, Cho et al., 2002; Sarker and Jayasinghe, 2007; Grant and Lambert, 2008; Sun and Reed, 2010; Jean 

and Bureau, 2016) but with a sizable focus on international flows due to a great interest for the impact of 

trade agreements. Domestic trade, on the other hand, has the advantage of mimicking a free trade 

situation hence its capacity to act as an adaptation tool can be analyzed without worrying about other 

cofounding factors such as manmade trade barriers, market structure differences and domestic 

agricultural subsidies. 

This manuscript fills a gap in the literature by offering the first application of the gravity model to the 

agricultural trade flows measured across the U.S. states. Based on newly-released Freight Analysis 

Framework with detailed drought data measured at a fine spatial and temporal resolution, the results of 

our structural gravity model show that drought in the destination state significantly increases the bilateral 

trade flows of crops. Moreover, when droughts occur in the origin state, they reduce its export capacity 

to other states, but the effect is not as large as the trade creation that results from droughts in the 

destination state.  

The second objective of this manuscript consists in measuring how the farmers’ profits change as a 

result of new weather conditions and of new domestic trade patterns. This second question calls upon 

the so-called Ricardian model of climate change (Mendelson et al., 1994; Schlenker et al., 2006; Deschênes 

and Greenstone, 2007), a reduced-form regression model where the dependent variable, land value or 

agricultural profit, presents the advantage of accounting for any agricultural activity and for substitution 

as a way of adapting to new climate conditions. Here, we rely on the panel data approach of Deschênes 

and Greenstone (2007) where agricultural profit is regressed on year-to-year weather fluctuations and a 

set of fixed-effects that account for additional unobservables. We extend it to include interstate 

dependence through trade. In itself this omitted variable does not correct for the other omitted variable 

biases their approach has been criticized for, namely the omitted weather variables (Zhang et al., 2017) 



 5 

and the omitted effect of storage (Fisher et al., 2012), but the latter two will also be dealt with in our long 

list of robustness checks. 

Our general equilibrium results show that exports act positively and significantly on the profit derived 

from crops production, which indicates that droughts in partner states contribute positively to the (pre-

subsidy) agricultural profit in the origin states. Our results are not readily comparable with those of 

Deschênes and Greenstone (2007) where all agricultural activities, including livestock, are bundled 

together in the calculation of agricultural profit. Hence, our approach implies that farmers’ adaptation still 

takes place but it does not include a possible switch to livestock. On the other hand, our spatial units being 

states instead of counties means that adaptation includes the option of production to shift its location 

over a larger territory. Finally, another element that differentiates our estimates from the current 

literature is that we consider both local demand, as captured through the usual per capita income proxy, 

and external demand. Indeed, by introducing the role of exports in the profit function we can now 

investigate the general equilibrium effect of drought.  

As usual in the climate impact literature, the last objective consists in using the estimates calibrated 

on historical data as well as the expected future weather conditions to project future changes in 

agriculture. Based on future weather data derived from four combinations of global and regional climate 

models, our simulation experiments confirm that future domestic trade will act as an efficient mechanism 

to mitigate future weather conditions as its presence shifts an expected $11.2 billion nationwide loss in 

profit into a $3.3 billion gain compared to the current level. Therefore, domestic trade is a crucial factor 

in a country’s capacity to cope with climate change and mitigate the risks associated to future food 

security. 

In order to shed some light on the links between droughts, trade and agricultural profits within the 

United States, the next section provides some background information about the interstate agricultural 
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trade flows, their database, and goes through an example demonstrating their sensitivity to severe 

drought. Section III provides the theoretical background and divides it into two subsections, one devoted 

to the gravity model and one to the Ricardian model, that describe our identification strategy. Section IV 

lists the remaining data and their sources. Estimation results as well as robustness tests and simulations 

results are presented in Section V. Finally, Section VI summarizes the results and offers some concluding 

remarks.  

II. Intra-national Trade of Major Crops in the U.S. 

This section first introduces the domestic trade datasets and then offers a snapshot of the agricultural 

trade flows within the U.S. It ends up with some intuitive perspectives regarding the changes in trade 

patterns under severe drought using modern data visualization tools.  

II.A   Data Sources for Domestic Trade Flows 

To our knowledge, the only previous attempt to measure crop shipments across U.S. states was 

conducted by a team led by Lowell Hill. They conducted two nationwide surveys on the interstate 

movement of five major cereal grains in 1977 and 1985 (Fruin et al., 1990). Their surveys discontinued in 

the 1990s due to the publication of the commodity flow survey (CFS) that first appeared in the public 

domain in 1993. CFS is a shipper-based survey conducted by the U.S. Census Bureau (USCB) and the 

Bureau of Transportation Statistics (BTS) during the economic census years (years ending in “2” and “7”). 

It collects basic information regarding freight movement such as its origin, destination, content, size, 

weight, dollar value and mode of transportation. Since its first publication, CFS has become the primary 

data source for domestic freight shipment studies (Wolf, 1997; Hillberry and Hummels, 2008; Crafts and 

Klein, 2014). While the earliest CFS data date back to 1993, the procedures and classification criteria used 

that year have been largely revised in the following surveys, hence only the data collected in the surveys 
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completed in 1997, 2002, 2007 and 2012 are comparable. The 2017 survey is still on-going at the time of 

writing this manuscript.  

There are few caveats associated to CFS. First, even though CFS is part of the Economic Census, it 

surveys only a portion of shipping establishments (100,000 out of 716,114) and then adjusts the raw data 

by survey weights to generate the estimates for the actual trade flows. Furthermore, in its public format, 

CFS does not identify singularly the shipments satisfying domestic vs. international demand (e.g. Illinois 

corn sold to California may be consumed at destination or exported to Asia). In order to fill up these data 

gaps, the Oak Ridge National Laboratory developed the more modern Freight Analysis Framework 

(Huwang et al., 2016) with the support of the Bureau of Transportation Statistics and the Federal Highway 

Administration (FHWA). 

Currently in its fourth version, the Freight Analysis Framework (henceforth FAF4) data fills the gaps of 

CFS by relying on various sources such as the agricultural census and the merchandise trade statistics and 

producing origin-destination figures (both in monetary value and actual weights) across the U.S. states, 

their metropolitan areas and towards foreign countries. Even though most of the final demand for 

agricultural products is located in metropolitan areas, intermediate demand, that is much larger, and the 

supply of such goods is not. As a result, we will focus on interstate trade in this manuscript. When it comes 

to disaggregation by commodity, FAF4 uses a two-digit sectoral classification of transported good (SCTG) 

that is similar to the harmonized system (HS) for international trade. Among the seven types of commodity 

available, we use cereal grains (SCTG 02) and fruits, vegetables and oilseeds (SCTG 03) only because they 

are constrained to the outdoor and thus they are more sensitive to extreme weather events than livestock 

and processed food which are the other two available categories. Note that soybean is the only major 

crop not listed in SCTG 02. It appears in SCTG 03, which obliges us to consider these two categories jointly 

in our manuscript even though fruits, vegetables and oilseeds represent only 36% of all these commodities 

(BEA, 2014). Robustness checks on each category will be performed anyway. 
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As mentioned in the introduction, the U.S. agricultural production and consumption are mostly 

for/from the domestic market. It is still true for grains, fruits, vegetables and oilseeds (henceforth “crops”) 

but to a lower extent as 17.86% of the production is exported and 87.02% of the intermediate and final 

consumption is domestically grown (United Nations, 2017). 

II.B   A Snapshot of the Domestic Trade Patterns of Crops 

<<Insert figure 1 here>> 

 Figure 1 represents the interstate trade flows in 2012, the most recent year available in the dataset. 

Panel (a) is a scatterplot showing for each state the value of crop export on the x-axis and the value of 

crop import on the y-axis (both in 2012 $ million). The size of the circle associated to each state is 

proportional to the value of its production of major crops while the three colors indicate the type of 

agricultural system (crop, animal or balanced) that is the most present in each state. The dotted lines 

represent the mean value of export and import. We find that California, Illinois, Iowa, Indiana, Minnesota, 

Missouri, New York and Nebraska are the “key” players in the interstate trade system (HH quadrant). The 

majority of these states are large crop producers, they have well-developed food-related industries and a 

large population. On the other hand, several states with low export but high import (LH) such as Texas, 

Wisconsin and Georgia are large livestock producers with a relatively small volume of crop grown locally. 

The high export – low import category (HL) is comprised of two types of states: i) the major producers of 

high-value crops (fruits, vegetables and greenhouse nursery products) such as New Jersey, Florida and 

Michigan and ii) the main crop producers with a small population density such as Kansas, North Dakota 

and South Dakota. Finally, the states in the low export-low import category are usually small states in 

terms of population and/or arable land area.  

Panels (b) and (c) are heatmaps describing the 2012 trade patterns of the two SCTG categories used 

here. Different colors are used in each cell to represent the volume intensity of every pair of bilateral 
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trade flows. The white cells represent zero trade flow. The origin states are on the x-axis and the 

destination states are on the y-axis. Two major findings emerge from the heatmaps: first, the largest off-

diagonal flows go from the large crop-producing states such as Iowa, Illinois and Kansas to the livestock-

producing states such as Wisconsin, Texas and Louisiana. It confirms our expectations that the major 

driver of domestic trade is crops used for animal feed. Second, the “key” players identified in panel (a) 

emerge in the heatmap too. For instance, Illinois exports mainly corn and soybean to over 30 states, but 

it also imports various crops from the rest of the country due to its large food manufacturing industry and 

its specialization in a relatively small number of crops and vegetables.  

II.C   Changes in Trade Patterns Under Severe Drought: The Case Study of Nebraska 

<<Insert figure 2 here>> 

The two chord diagrams in figure 2 give us some additional insights about the potential impact of a 

drought on trade flows. They focus on Nebraska and its trade in 2007 (panel a) and 2012 (panel b). 

Nebraska is chosen because, according to the recent USDA census, agriculture occupies 92% of its land 

area, it contributes to around 30% of its GDP, the state ranks fourth in the nation in terms of agricultural 

sales and it is one of the primary producers of both cereal grains (it ranks fifth in the nation) and livestock 

meat (fourth in the nation). In addition, while Nebraska experienced virtually no drought-day in 2007, it 

was one of the most affected states by the notorious 2012 Midwest drought. We acknowledge that other 

factors may have played an important role in the observed changes in trade flows and that only a formal 

econometric analysis, as described further below, will allow us to identify the singular effect of drought. 

Yet, several important elements emerge from the 2007 chord diagram: first, the ratio of export to import 

is 3.29, which indicates that Nebraska was clearly a net crop exporter that year. Second, California, Texas 

and Colorado are at the top of the 34 states Nebraska exported to while South Dakota, Kansas and Iowa 

are at the top of the 32 states Nebraska imported from.  
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Fast forward to 2012, the ratio of export to import is now 1.24. Nebraska exports to just 25 partners 

that year and the total exporting value has dropped by 9%. For instance, Nebraska stopped exporting to 

Pennsylvania and exports to Texas have decreased by 73% in value. At the same time, the number of 

importing partners slightly increased to 22 and the total importing value increased by 107%. The most 

drastic change compared to 2007 is the 362% increase in imports from Iowa.  

To sum up, exports seem to be negatively impacted by a local drought while the opposite effect takes 

place for imports, as common knowledge would suggest. However, neither common knowledge nor the 

descriptive statistics used so far can tell us if droughts have a larger effect on imports or on exports. The 

structural gravity model we use to formally test this hypothesis is described in the next section.  

III. Empirical Strategy 

Our empirical strategy is based on the combination of two well-known reduced-form models, namely 

the gravity model of trade and the Ricardian model of climate change impact. This section decomposes 

this integrated methodology into three steps. The first step consists in estimating a gravity model focusing 

on the sensitivity of interstate trade to droughts and in extrapolating from it the (expected) equilibrium 

trade flows between U.S. states. Next, we aggregate all outward flows by origin state to measure the 

external demand they face and add it to our Ricardian model. Finally, we use the expected value of future 

weather conditions and droughts to estimate future agricultural profit when future interstate trade is 

included or disregarded. The difference between the two informs us about the capacity of trade to 

mitigate the damaging impact of future weather conditions on agricultural profit.    

III.A   Gravity Model of Interstate Agricultural Trade 

Our starting point is the generalized structural gravity specification proposed by Head and Mayer (2014) 

which takes the following form:  
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(2) 
X"#$ =

Y"$
Π"$

	E#$
P#$

τ"# 

 

Where Xijt is the bilateral trade flow from exporter i to importer j at time t. Exporter i’s features are 

represented by Yit. Ideally, these features should describe state i’s potential for agricultural export. 

Therefore, besides the commonly used farm industry GDP, we also include other factors affecting 

agricultural productivity such as growing degree days (DD), precipitation (RN) and the drought conditions 

(DT) as follows: 

(3) Y"$ = exp	(β1GDP"$45 + β7DD"$ + β8RN"$ + β;DT"$) 

      Similarly, Ejt represents importer j’s features. Its level of demand is captured through its GDP in food 

manufacturing, as the standard gravity model suggests, as well as other factors affecting its own 

agricultural production because fluctuations in the latter can affect demand for external goods. For 

instance, a drought is expected to increase the import of crops.  

(4) E#$ = exp(𝛿1GDP#$4? + 𝛿7DD#$ + 𝛿8RN#$ + 𝛿;DT#$) 

In Eq. (2), the terms Π"$ and P#$ are the multilateral resistance terms (MLRTs) for the exporter and 

importer respectively. Anderson and Van Wincoop (2003) argue that the existence of these MLRTs is the 

key distinction between the structural gravity and the naïve gravity that traces back to Tinbergen (1962). 

We approximate these multilateral resistance terms by GDP weighted average distance between a given 

state to all other states following Wei (1996). This index proxies for the remoteness of an exporter 

(importer) to all potential destinations (origins) 2.  

                                                             
2 We are aware that Yotov et al. (2016) have suggested to control for the MLRT by using exporter-time and importer-
time fixed effects but this approach would obviously absorb the variables of interest. 
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      Finally, τ"# captures the dyadic effects that take place between two states. We assume the following 

functional form for this variable: 

(5) τ"# = exp	(π1T"# + π7C"# + π8H"#) 

      Where Tij is the distance between exporter and importer measured as the travel time by trucks, Cij is 

the contiguity dummy that takes on value 1 when states i and j share a border and 0 otherwise. Last but 

not least, Hij is a dummy capturing the home-state effect (value is 1 only when i = j). This intrastate dummy 

first appeared in Wolf (1997) as a measure of the home-state effect in intra-national trade and has become 

a standard control since then.  

      Plugging Eqs. (3) - (5) into Eq. (2) results in Eq. (6) that can be estimated by Poisson Pseudo-Maximum 

Likelihood (PPML). According to Silva and Tenreyro (2006, 2011), the PPML estimator generates more 

robust results than the traditional OLS when the data of bilateral trade contains many zeros and/or the 

gravity model displays heteroscedastic error terms. Both phenomena are present in our sample. Indeed, 

the Ramsey RESET test is significant (p-value = 0.000) and the ratio of zero flow ranges from 21% (in 1997) 

to 25% (in 2012).  

(6) 

X"#$ = exp	(β1GDP"$45 + β7DD"$ + β8RN"$ + β;DT"$ + 

																						δ1GDP#$4? 	+ δ7DD#$ 	+ δ8RN#$ + δ;DT#$ + 

																								π1T"# + π7C"# + π8H"# − ln	(Π") − ln	(P#)) 

Trade theory (Yotov et al., 2016; Head and Mayer, 2014) enables us to draw some expectations on 

the direction of the coefficients in our reduced-form estimation equation. As usual in gravity models, a 

shared border, the home effect, the MLRTs, the exporter’s production capacity and the importer’s 

demand are expected to promote trade while distance should reduce it. Drought has a negative impact 

on local productivity, therefore it should reduce export and increase import to compensate for the loss in 

local supply. The expected sign of the other weather variables is undetermined because the marginal 

effects of these variables on agricultural productivity are not unambiguously positive or negative. 
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Before we close our discussion on the gravity model, we make a few remarks with regards to its fixed 

effect estimation as it has become standard practice since Feenstra (2015) proposed it as an alternative 

to the more complex calculation of MLRTs brought to the fore by Anderson and Van-wincoop’s seminal 

paper (2003). Despite its popularity, the fixed effect estimation is not a silver bullet for every gravity 

model. One well-known limitation is that the origin- or destination- fixed effects absorb any monadic 

effect, i.e. any covariate that only varies by exporter (and are constant across all importers) or by importer 

(constant across all exporters). Unfortunately, our variable of interest, drought, is exporter- and importer-

specific. Therefore, importer and exporter state-by-year fixed effects would absorb it. To bypass this issue, 

we approximate the remoteness index using Wei’s (1996) approach3 and we also incorporate two types 

of fixed effect structures constructed at the climate zone level (each zone encompasses between two and 

eleven states): (i) climate-zone dyadic fixed effects and year fixed effects; (ii) climate-zone dyadic fixed 

effect as well as importer and exporter climate-zone-by-year fixed effects.  

III.B   Ricardian Analysis for Drought Impact 

When it comes to the Ricardian model, we adopt the reduced-form specification of Deschênes and 

Greenstone (2007) and provide several important modifications to it: 

(7) Y"$ = θDT"$ + γEXI"$ + f(DD"$, RN"$) + ρ1PI"$ + ρ7PD"$ + ν" + νOPQ$ + ϵ"$ 

Where Y"$ is the net profit (before tax and subsidy) of growing crops in state i and year t and EXI"$ 	≡

∑ XU"#$#V"  represents the (log of) the predicted export using the estimated gravity equation (6).  This two-

step approach allows us to control for the endogeneity of the trade flows (Kelejian and Piras, 2014; Qu 

and Lee, 2015) when calculating the direct and indirect (trade-based) effect of drought on profit. It is 

important to note that, among other characteristics such as location, timing and duration, the spatial 

                                                             
3 In order to test the validity of our choice, we regress both Wei’s inward and outward MLRTs against the exporter-
by-year and importer-by-year dummies (minus one time period) respectively and find a R-squared value above 0.99. 



 14 

extent of the drought matters in this case as geographically narrow shocks have little to no impact on 

prices as each state is assumed to be a price taker. Therefore, one would expect a drought of that type to 

decrease the volume exported and the profit in the affected state while other states providing the same 

commodity would see both exports and profits increase as a result of trade diversion. If, on the other 

hand, a geographically broad drought like the 2012 event in the Corn Belt takes place, then it would lead 

to higher prices which would cushion the fall in profits in the exporting places. Importing states would not 

have as much leeway on trade diversion and would have to face more expensive inputs. 

In Eq. (7), the other variables, DT"$, DD"$ and RN"$ share the same meaning as in Eq. (6). f(∙) is the 

quadratic functional form as the non-linear effect of these variables has been highlighted numerous times 

in the Ricardian literature (Mendelsohn et al., 1994; Deschênes and Greenstone, 2007). PI"$ is the (log of) 

per capita income and PD"$ stands for population density. They are socioeconomic controls commonly 

used in the Ricardian literature to capture local demand for food and how much land is used for purposes 

other than agriculture (Kelly et al., 2005). We also include the state fixed effects 𝜈Y  to capture any time-

unvarying factors such as the soil quality, altitude, topography and geographical location.  Last but not 

least, the climate zone-by-year fixed effects 𝜈Z[\] , where index 𝑐𝑧Y  stands for states i in climate zone cz, 

are added to allow different time trends for different climate zones. Their presence is necessary because 

a bioenergy boom that affected profoundly the net revenue of Midwestern farmers started in the second 

half of our study period. On the other hand, the fruit-rim states probably experienced a more moderate 

impact as the price indices of the fruits and vegetables have only mildly increased during the same period. 

For instance, the national corn price per bushel tripled from $2.28 in 2006 to $6.67 in 2012 while the fruit 

and vegetable price index increased by 11% only over the same period.    

In summary, the presence of predicted exports in the Ricardian equation allows us to calculate the 

general equilibrium effect of drought on agricultural profit and to highlight its spatially heterogeneous 

nature. In the absence of such interregional effects, our estimate of the marginal effect of drought on 
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agricultural profit would likely to suffer from a missing variable bias (Anselin, 1988; Le Sage and Pace, 

2009) which would affect our results, our projections, and would suggest misleading mitigation and/or 

adaptation strategies. 

IV. Data Sources and Description 

Besides the trade flow data which has been discussed in Section II, there are three additional groups of 

data needed to estimate a gravity equation (Eq. 6). They are the bilateral accessibility between each pair 

of importer-exporter, the exporter’s features and the importer’s features. 

Bilateral accessibility --- This dyadic relationship is traditionally captured through distance (or travel 

time) and dummy variables for continuity, common language and colonial ties in the international trade 

literature (Yotov et al., 2016). Here, we use a contiguity dummy and travel time only since the other 

characteristics do not fit the domestic trade context. The travel time is calculated by Open Source Routing 

Machine (OSRM) that finds the shortest path between the most populous city of each origin and 

destination based on existing road networks. According to Hwang et al. (2016), the shipments of 

agricultural commodities are almost all moved by truck; therefore, travel time based on the highway 

system is a more relevant proxy of trade costs than the geographic distance widely used in international 

trade studies.   

Exporter’s features --- this set of monadic variables describes the supply capacity of a potential 

exporter. We select the Gross Domestic Product in the farming industry (NAICS code No. 11) as it captures 

the size of the current production in the origin state. It comes from the Bureau of Economic Analysis (BEA). 

Besides the current production, the crop stock left from the previous year could be an additional source 

for supply capacity. This piece of information, collected from USDA’s National Agricultural Statistics 

Service (NASS), will be used as an additional exporter feature in one of the robustness checks. Last but 

not least, as indicated in section III, a set of weather characteristics, including the variable of interest, also 
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belongs to this category. However, since these variables will also be used for capturing the importer’s 

features and for the Ricardian analysis, we postpone their descriptions to the latter part of this section.  

Importer’s features --- we choose the GDP in food manufacturing (NAICS code No. 311) from BEA as a 

proxy for a state’s capacity to purchase agricultural products from any origin state. Since the food 

manufacturing industry buys 38.3% of the crops (BEA, 2014) whereas the direct demand by final 

consumers is only 29.1% of the production, we believe it is a better choice than including the overall per 

capita GDP. However, as part of our robustness checks, we also collect the data of total population from 

the U.S. Census Bureau (USCB) and the bioenergy capacity from USDA’s Economic Research Services (2.4% 

of the direct purchases of crops). They are used as proxies for final demand and demand for energy use 

respectively.   

The weather conditions affect agricultural productivity in both the exporters and the importers. They 

are captured through three variables: growing degree days (GDD), total precipitation and drought. GDD, 

a measure of heat accumulation used by agronomists, is calculated based on daily average temperature 

with 8°C as the lower bound and 32°C as the upper bound (Ritchie and NeSmith, 1991; Schlenker et al., 

2006). Meanwhile, we sum daily precipitation over the growing season (April 1st to September 30th, 

according to Deschênes and Greenstone, 2007) to get the total precipitation. The raw raster data of daily 

average temperature and precipitation is from the North American Regional Reanalysis (NARR) dataset 

(Mesinger et al., 2006). ArcGIS 10.2 is used to convert raster data to the county-level. After calculating the 

county-level GDD and total precipitation data, we aggregate them to the state level with a weight 

proportional to each county’s cropland acreage. 

The starting point of our drought index calculation is the raster surface of monthly Palmer Drought 

Severity Index (PDSI) from the National Oceanic and Atmospheric Administration (NOAA). We first 
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calculate the zonal statistics on the U.S. county layer and then transform the county-level monthly PDSI 

records into a weighted count of severe drought days at the state level as follows:  

(8) 
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The calculation involves two steps: first, we transform the number of severe drought months (i.e. with 

a PDSI < -3) for each county into a number of days to capture the duration of droughts. Next, we weight 

that sum by the share of each county’s cropland acreage to reflect the extensiveness of droughts. We 

choose -3 as the cut-off to identify severe droughts as recommended by the U.S. Drought Monitor.  

Besides the weather data which have been discussed above, there are two additional groups of data 

needed to estimate the Ricardian equation (Eq. 8). They are the socioeconomic controls (population 

density comes from Census and per-capita income comes from BEA) and agricultural profit, the dependent 

variable. The latter corresponds to the (pre-subsidy) difference between the value of sales by crops farm 

and the correspondent production costs. The raw sales and costs data are from the Agricultural Censuses. 

The Census only reports cost by expense type instead of by commodity, which leads us to estimate the 

production cost of crops farms. In order to do so, we first classify the different types of cost into three 

categories: crop-related, livestock-related and universal (or fixed cost). Then we add up all the crop-

related expenses to the universal expenses weighted by the value of sales by crop farms to all farms. Note 

that our approach is different from Deschênes and Greenstone (2007) as they calculate the difference 

between sales and cost of all farms instead of of crop farms alone. As a result, the set of activities farmers 

are choosing from when adapting to new weather conditions is limited to the various crops included in 

the trade flows and the profit function. Table 1 offers a summary of all the data used in this paper.  

<<Insert table 1 here>> 
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V. Estimation Results, Robustness Checks and Impact Simulations 

This section starts with the estimation results from the gravity equation and several robustness checks 

(subsection A). Then it continues with the calculation of the changes in the extensive and intensive 

margins of trade due to drought (B) as well as the marginal effects of drought in our general equilibrium 

Ricardian setting (C). Finally, it moves on to assessing the impact of future weather conditions on 

agricultural profit with and without trade (D). 

V.A   Estimation Results of the Gravity Equation 

<<Insert Table 2 here>> 

Table 2 reports the OLS and PPML regression results of Eq. (6) with the two fixed effect structures 

mentioned at the end of section III. By comparing the OLS estimates with the PPML estimates, we confirm 

that PPML is the preferred estimation method. Indeed, the presence of zero flows causes OLS to eliminate 

around one third of the observations as the dependent variable is in log terms, and the corresponding 

adjusted R squared to be significantly lower than in PPML. We also find that there are only minor 

differences in the PPML coefficient estimates based on the two sets of fixed effects. Therefore, we choose 

column (4) as the preferred specification because its fixed effect structure is more consistent with the 

theory (Yotov et al. 2016) than the one used in column (3).  

 The coefficient estimates from our preferred specification confirm our intuitions behind the changes 

in trade flows seen in Nebraska in 2012 compared to 2007. Indeed, our results confirm that severe drought 

days in the origin state have a negative impact on export because they reduce the state’s supply capacity. 

Yet, this effect is not statistically significant, even at 10%. More drought days in the destination state, on 

the other hand, increase that state’s demand for outside agricultural commodities. Importing flows are 

therefore more sensitive to droughts than exporting flows (even if origin-drought days were significant, 

the difference with destination-drought days would be significant at 5% according to a Wald test). This 
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difference could be explained by both pulling and pushing factors: on the supply side, farms in the origin 

state can rely on inventories built over the previous years as a way to compensate for the current year’s 

limited production. On the demand side, however, the food industry in the destination state enjoys much 

less flexibility. Indeed, in the event of a local drought, it becomes more dependent on imported inputs 

because the location of its food processing plants is fixed at least in the short- and medium-term. Similarly, 

it is reasonable to assume that other forms of demand, livestock, population and bioenergy facilities, do 

not move much across states. 

Note that another causal interaction between weather and trade is the significantly positive role of 

precipitation in the destination state on exports. Origin precipitation does not have a statistically 

significant impact on trade though. The rest of the covariates are significant, and their sign meets the 

theoretical expectations. For instance, the contiguity dummy has a significant and positive impact on 

bilateral trade. The travel time, on the other hand, plays a significant negative role. The exporting state’s 

farm industry GDP, as the proxy for the origin’s supply capacity, has a positive effect. The food 

manufacturing GDP, as the proxy for the destination’s purchasing power, affects trade flows positively as 

well. The remoteness indices for both exporter and importer are positive as the trade theory suggests 

(Feenstra, 2015).  

<<Insert Table 3 here>> 

There are several confounding factors and caveats that might affect the validity of the key conclusions 

mentioned above. Table 3 presents a list of robustness checks that, to some extent, addresses these 

concerns and caveats. The first two deal with the fixed effects defined at the climate zone level. As 

mentioned in section III, the ideal fixed effect structure suggested by trade theorists involves importer-

by-year and exporter-by-year fixed effects, but they would completely absorb any variation in drought 

conditions. We first test the robustness of our results by adopting USDA’s farm production regions. 
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Besides the climate normal, USDA takes also into account other factors such as agricultural activities, soil 

qualities and topography when grouping the states into farm production regions. The second check uses 

one side exporter/importer-by-year fixed effects. When we try to identify the impact of drought in 

destination, the exporter-by-year fixed effects are included to absorb any origin-specific factors, 

meanwhile the other factors remain the same as in Eq. (6). Similarly, the impact of drought in the origin 

state is identified by replacing destination-specific factor in Eq. (6) with the importer-by-year fixed effects.  

Another robustness check consists in testing the results when the two types of trade flows, cereal 

grain (SCTG 02) and other main crops (SCTG 03), are identified singularly. Indeed, one would expect that 

their individual sensitivity to drought differs since the fields growing cereal grains are more likely to be 

rain-fed than those growing fruits and vegetables.  

      The price effect may be a serious confounding factor. Since the monetary value of the shipments is 

used as the dependent variable in the default gravity analysis, identification may be challenged by the fact 

that severe droughts usually trigger a price increase for the major crops. To avoid this confounding effect, 

we test the robustness of our results to the use of the actual physical quantities of the interstate 

shipments. These data come from FAF4. 

Another potential identification problem comes from severe drought days that are measured for the 

entire year. Recent scientific studies (Lobell et al., 2014) suggest that if a drought occurs during the latter 

stage of the growing season it might cause larger damage to crop yield. In order to examine the impact of 

drought timing on our results, we define two alternative measures of severe drought days. The first one 

counts drought only during the growing season (April to September) while the other one counts only the 

drought that occurred in the last three months of the growing season (July, August and September)4.  

                                                             
4 Note that, in addition to questions about the period of the event, other drought indices such as the Standardized 
Precipitation Index (SPI) or the Standardized Precipitation Evapotranspiration Index (SPEI) would raise a significant 
amount of uncertainty associated to the “correct” time scale needed for their calculation (McKee et al., 1993). 
Therefore, we disregard their use in this paper. 
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Finally, we examine the sensitivity of our results to the addition of other explanatory variables 

capturing the pull and push factors of the flows. Specifically, the crop stock left from the previous year 

can be considered as a potential contributor to the supply capacity of the origin state. Furthermore, 

besides the conventional use of major crops, the ethanol and biodiesel producers have quickly established 

themselves as major buyers of corn and soybean due to the bioenergy boom of the recent years, hence 

their role needs to be investigated too. 

The coefficients and standard errors associated to drought are reported for each of the robustness 

checks above in table 3. These results confirm those displayed in table 2 in that drought has a negative 

but non-significant effect in the origin state while it has a positive and significant effect (at 5% at least) in 

the destination state.  

V.B   Drought Impacts on Extensive and Intensive Margin  

We explore further how drought affects the extensive and intensive margins of the agricultural trade 

flows through the decomposition suggested by Chaney (2008). For this analysis, we report two timings of 

drought, full year and 3-month before harvest, as the results for the growing season are very similar.  

<<Insert Figure 3 here>> 

Figure 3 presents the regression results. Panel A is dedicated to the extensive margin (i.e. number of 

trade partners), panel B displays the intensive margin in monetary terms (million dollars per partner) while 

panel C shows the intensive margin in physical terms (kilotons per partner).  The point estimates of the 

drought variable and their associated 95% confidence interval are represented in each panel for four 

different types of trade flows (inward flows and outward flows for each SCTG group). Three important 

results emerge from this analysis. First, droughts reduce the extensive margin of the export flows. States 

experiencing a severe drought reduce the number of places they export to, more especially if they export 
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grains. On the other hand, a drought in an importing state obliges it to increase its number of grains 

suppliers while the effect on imports of vegetables, fruits and oil seeds is mostly non-significant.  

Panels B and C show that a drought in the origin state reduces the intensive margin of grain export 

whether the latter is measured in value or volume. We also note that the magnitude of the intensive 

margin effect is nearly twice larger than the value of the extensive margin effect. When it comes to a 

drought in the destination state, the average effect on the intensive margin of grain export is positive and 

large at 0.1. It is nearly four times the extensive margin effect, so droughts affect the volume/value traded 

much more than the number of trade partners. We also note that these effects are asymmetric across 

commodities as the average intensive margins for trade in vegetable, fruit and oil seeds are close to zero.  

V.C   Marginal Effects Calculation 

It follows from (7) that, unlike the case of the Ricardian model without interstate interaction, the 

derivative of Y" with respect to drought does not equal θ only but takes a value determined by the i,j th 

element of the partial derivative matrix S below:  
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Based on the terminology introduced by LeSage and Pace (2009) for spatial interaction models, we 

define the average direct impact of a drought on profit as the average of 𝑆YY	or 1
�
∑ £	¤Q

£	¥¦Q
�
"x1 = 1

�
tr(𝐒). 

Furthermore, while typical regression coefficients are interpreted as the average effect of the explanatory 

variable on the dependent variable over the sample of observations, our general equilibrium approach 

ensures that each of these diagonal derivatives is actually composed of the following elements: 

(9) 
∂	Y"
∂	DT"

= θ +
∂	EX"
∂	DT"

= θ + γ ×m
∂	X"#
∂	DT"#

= θ + γ × β; ×
EX"
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Equation (9) indicates that the first, direct, channel of transmission of a change in drought in i on profit 

in i comes from the partial differentiation of Eq. (7) with respect to severe drought days (DT). The second 

channel emanates from the impact that a change in drought in i will have on exports from i. The latter 

marginal effect derives from the definition of the variable EX and from using β; =
£	�~�	(	§Q¨)
£	�~�	(¥¦Q)

. 

In addition, the sum of the off-diagonal element of row i in matrix S corresponds to the interstate 

spillovers of drought on the agricultural profit of location i (inward effect). It represents the total impact 

on Y" from changing the amount of droughts in any other state. 

(10) m
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∂	DT#

�

#V"
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Similarly, the sum of the off-diagonal elements of column i in matrix S allows us to calculate how a 

drought in state i spills over all other locations (outward effect) and affects their agricultural profit.  
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<<Insert Figure 4 here>> 

Figure 4 displays the direct effect (panel A), the inward spillover effect (panel B) and the outward 

spillover (panel C) of one extra week of severe drought on the per acre agricultural profit of each state. 

As expected, Panel A suggests the direct effect of a severe drought on profit is negative (Eq. 9). Further 

investigation reveals that it is the trade channel that drives the results. This finding helps explain why 

California and the Midwest, where the main crop exporters are located, experience a greater profit loss 

than the rest of the country after one additional week of droughts.  

Inward spillover effects, on the other hand, report that the average effect of one additional week of 

drought in the trade partners reduces their local production, obliges them to import from a given state, 

hence increases local profit. It can be seen from panel B that the Corn Belt states such as Iowa, Illinois and 
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North Dakota, and the other “key” players in the agricultural trade, California for example, are the ones 

that benefit the most from the distress of their trade partners.  

Panel C illustrates the spatial distribution of the outward spillover effects which correspond to the 

average changes in the trade partners’ agricultural profit arising from one extra week of drought in a given 

state. Our results show that Minnesota, Indiana and Washington are the top three states of which trade 

partners benefit the most from a drought in the former. We also note that, on average, the Corn Belt 

states display larger outward spillover effects than the rest of the sample. As for the inward spillovers, 

this result comes from their position in the interstate trade system.  

V.D   Future Projections  

Finally, we conduct a simulation experiment of the impact of future weather conditions on future 

agricultural profit in order to illustrate the benefits of including interstate trade in the Ricardian 

framework. In the benchmark scenario we use the marginal effect of the weather variables, including 

drought, on profit calculated from a model without trade. In the alternative scenario, the trade-induced 

spillovers emanating from Eq. (6) are also accounted for. In order to keep our results in tune with the 

current literature, we follow the usual approach of holding all the non-weather-related variables constant 

in both in Eq. 6 and 7. It allows us to calculate the change in profit due exclusively to the expected change 

in weather conditions.   

Based on our approach, interstate trade should be seen as an efficient adaptation mechanism if the 

losses in the predicted profit from the second scenario are lesser those derived from the trade-less 

scenario. Following the suggestion of Burke et al. (2016), four different future climate models are used in 

order to check the robustness of the results against climate uncertainty. These models are the CRCM-
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CCSM, the CRCM-CGCM, the MM5I-CCSM and the RCM3-GFDL5. All four models are a combination of one 

regional climate model focusing on North America (represented by the first four characters before the 

hyphen) and one general circulation model (represented by the last four characters). The base period for 

these models is 1968-2000 and their projections are for 2038-2070. We use the difference between past 

and future average temperature and precipitation these models generate to do our simulations. For 

changes in severe drought days, we adopt the self-calibrated PDSI data of Dai et al. (2017) which, in spite 

of its recent publication, has been used in several contributions to quantify the future drought patterns 

due to climate change (see Zhao et al. 2017, Huang et al., 2017, Trenberth et al., 2017, to name a few). 

This dataset contains global monthly PDSI records from 1900 to 2100 at a 2.5-degree spatial resolution. 

Future PDSI data is projected based on 14 different general circulation models (GCMs). We use the 

average of all 14 GCMs, calculate the average severe drought days for the base (1968-2000) and the future 

(2038-2070) periods using Eq. (8) and then take their difference. The average change in the nation is 1.8 

more days of drought (std.dev. = 2.0) with the maximum change experienced in Utah (8.2 more days) and 

the minimum in Florida, Maine, Maryland, New Hampshire, Pennsylvania and West Virginia as they do 

not expect any increase in severe drought days. 

<<Insert Figure 5 here>> 

The difference in the results of our simulation experiments with and without trade are reported in 

figure 5. The map in Panel A displays for each state the magnitude of the expected capacity of interstate 

trade to mitigate the adverse effect of climate change on agricultural profit6. As expected, the magnitude 

of the mitigation is greater for the main crop producers and exporters of the Midwest. Among them 

                                                             
5 CRCM stands for Canadian Regional Climate Model v4. MMI5 stands for Penn. State University NCAR Mesoscale 
Model. RCM3 stands for International Centre for Theoretical Physics Reg. Climate. CCSM stands for Community 
Climate System Model.  CGCM stands for Coupled Global Climate Model. GFDL stands for Geophysical Fluid 
Dynamics Laboratory GCM.  
6 Because the results are similar among the four regional-global climate models, we only display the map associated 
with the average results. However, the map for each model is available upon request.  
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Michigan and Minnesota are the two biggest beneficiaries. We calculate that, at the national level, 

interstate trade has a mitigation effect worth $ 14.5 billion as its presence transforms an expected loss of 

$ 11.2 billion without trade into a $ 3.3 billion profit compared to the average historical value. 

Furthermore, panel B displays the histogram of the average mitigation effect. It shows that 33 states 

should expect a $30 per acre or more mitigation effect due to trade. It represents as much as 15% of the 

average national farm profit measured over 1997-2012.  

VI. Conclusion  

This paper offers a novel reduced-form approach that incorporates the sensitivity of U.S. agricultural profit 

to the interregional trade of agricultural commodities which, in turn, is sensitive to the occurrence of 

severe drought in the destination states and, to a lesser extent, in the origin states too. This general 

equilibrium approach allows the marginal effect of a drought on the profit of each state to differ spatially 

depending on the state’s position in the domestic trade system of agricultural commodities. For instance, 

we find that the major crop producer and exporter states such as Illinois, Minnesota and Indiana are the 

main beneficiaries of the distress a drought generates in their trade partners. 

In order to reach these results, we first highlight that droughts increase the import of commodities 

and reduce export although the latter effect is not statistically significant. Importing flows are less resilient 

to extreme weather events because the spatial location of their demand, whether it is the food 

manufacturing sector, live animals or households, is fixed. The estimates of our structural gravity model 

allow us to calculate the expected value of the interstate exports of agricultural commodities. It is 

integrated into a spatially explicit Ricardian model of which results indicate that the indirect effect of 

droughts through changing trade flows has a larger impact on a state’s agricultural profit than its direct, 

local, effect. Further investigation reveals that the intensive margin of traded grains, whether measured 

in volume and value, is more affected than their extensive margin.  
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Whether trade can serve as a successful mitigation mechanism is one of the challenging questions the 

uncertainty associated to future weather conditions oblige us to investigate further. While the evidence 

at the international level seems promising (Reilly and Hohmann, 1993; Rosenzweig and Parry, 1994; Julia 

and Duchin, 2007; Schenker, 2013), this manuscript is the first one to deal with intranational trade where 

the capacity of adaptation is limited by the range of nationally-produced goods, country-wide weather 

conditions and the national transportation network. However, the advantage of studying domestic trade 

is that the confounding effect of the traditional international trade barriers is removed. Moreover, the 

size of the U.S. domestic market as well as the White House’s reconsideration of several international 

trade agreements obliges us to prioritize the domestic rather than the international trade to evaluate the 

future of the nation’s food security.  

Based on precipitation and rainfall data derived from four combinations of future regional and global 

climate models as well as future drought data projected from 14 different general circulation models (Dai 

et al., 2017), our results indicate that the capacity of domestic trade to mitigate the adverse effect of 

future weather conditions is worth $ 14.5 billion (in 2012 prices). Indeed, while a $ 11.2 billion nationwide 

loss in agricultural profit is expected when trade is disregarded from our model, its presence turns our 

projections into a $3.3 billion gain or a 3.4% percent increase in annual agricultural sector profit. This 

figure is close to the 4% annual gains expected in Deschênes and Greenstone (2007) even though they do 

not consider trade. Far from claiming that trade is the “silver-bullet” answer to the adverse effect future 

weather conditions are expected to produce, our results challenge the relevance of the future estimates 

generated by the current Ricardian literature where agricultural profit (or farmland values when cross-

sections are used) is independent of the changes in weather conditions (or climate in cross-section) in the 

places importing agricultural commodities.  

Future research could take our general equilibrium approach in several directions. First, one could 

consider the trade flows of all agricultural activities, including livestock, as a way to come closer to the 
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traditional Ricardian measurements where all sectors are bundled up. This approach could then consider 

higher order effects such as when the sale of crops used for animal feed affects the interstate trade of live 

animals to the food manufacturing industry. We anticipate that this approach would conclude to an even 

larger capacity of the domestic trade to mitigate the effect of future weather conditions on agricultural 

profit.  Second, our results provide some useful insights to the food transport industry. For instance, the 

Mississippi River watershed is a major shipping route for the grains grown in the Midwest. As a result, a 

drought in this area would have negative consequences on the barge traffic and all the jobs associated it 

(Ziska et al., 2016). Third, other extreme weather events such as floods and early frost could be considered 

as their frequency and intensity are expected to increase in the future (IPCC, 2014) and their damaging 

effects on agriculture have been highlighted in the literature (e.g. Smith and Lazo, 2001; Gu et al., 2008; 

Zhang et al., 2013; Kukal and Irmak, 2018).  
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FIGURE 1. OVERVIEW OF DOMESTIC TRADE FLOWS OF MAJOR CROPS IN 2012 

  

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

AL

AZ
AR

CA

COCT
DE

FL

GA

ID

IL

IN

IA

KSKY

LA

ME

MD
MA MI

MN

MS

MO

MT

NE

NV
NH

NJ

NM

NYNC

ND

OH

OK
OR

PA

RI
SC SD

TN

TX

UT
VT

VA

WA

WV

WI

WY

LL

LH

HL

HH

0

3297

5000

10000

15000

0 3297 5000 10000 15000
export volume

im
po

rt 
vo

lu
m

e

prod. size
●

●

●

●
●
●

0−5000

5000−10000

10000−15000

15000−20000

20000−25000

above 25000

prod. type
●

●

●

animal

balanced

crop

A

Alabama
Arizona

Arkansas
California
Colorado

Connecticut
Delaware

Florida
Georgia

Idaho
Illinois

Indiana
Iowa

Kansas
Kentucky
Louisiana

Maine
Maryland

Massachusetts
Michigan

Minnesota
Mississippi

Missouri
Montana

Nebraska
Nevada

New Hampshire
New Jersey
New Mexico

New York
North Carolina

North Dakota
Ohio

Oklahoma
Oregon

Pennsylvania
Rhode Island

South Carolina
South Dakota

Tennessee
Texas
Utah

Vermont
Virginia

Washington
West Virginia

Wisconsin
Wyoming

Al
ab

am
a

Ar
iz

on
a

Ar
ka

ns
as

C
al

ifo
rn

ia
C

ol
or

ad
o

C
on

ne
ct

ic
ut

D
el

aw
ar

e
Fl

or
id

a
G

eo
rg

ia
Id

ah
o

Ill
in

oi
s

In
di

an
a

Io
w

a
Ka

ns
as

Ke
nt

uc
ky

Lo
ui

si
an

a
M

ai
ne

M
ar

yl
an

d
M

as
sa

ch
us

et
ts

M
ic

hi
ga

n
M

in
ne

so
ta

M
is

si
ss

ip
pi

M
is

so
ur

i
M

on
ta

na
N

eb
ra

sk
a

N
ev

ad
a

N
ew

 H
am

ps
hi

re
N

ew
 J

er
se

y
N

ew
 M

ex
ic

o
N

ew
 Y

or
k

N
or

th
 C

ar
ol

in
a

N
or

th
 D

ak
ot

a
O

hi
o

O
kl

ah
om

a
O

re
go

n
Pe

nn
sy

lv
an

ia
R

ho
de

 Is
la

nd
So

ut
h 

C
ar

ol
in

a
So

ut
h 

D
ak

ot
a

Te
nn

es
se

e
Te

xa
s

U
ta

h
Ve

rm
on

t
Vi

rg
in

ia
W

as
hi

ng
to

n
W

es
t V

irg
in

ia
W

is
co

ns
in

W
yo

m
in

g
destination

or
ig

in

trade volume
0−1

1−10

10−100

100−1000

1000−10000

above 10000

B

Alabama
Arizona

Arkansas
California
Colorado

Connecticut
Delaware

Florida
Georgia

Idaho
Illinois

Indiana
Iowa

Kansas
Kentucky
Louisiana

Maine
Maryland

Massachusetts
Michigan

Minnesota
Mississippi

Missouri
Montana

Nebraska
Nevada

New Hampshire
New Jersey
New Mexico

New York
North Carolina

North Dakota
Ohio

Oklahoma
Oregon

Pennsylvania
Rhode Island

South Carolina
South Dakota

Tennessee
Texas
Utah

Vermont
Virginia

Washington
West Virginia

Wisconsin
Wyoming

Al
ab

am
a

Ar
iz

on
a

Ar
ka

ns
as

C
al

ifo
rn

ia
C

ol
or

ad
o

C
on

ne
ct

ic
ut

D
el

aw
ar

e
Fl

or
id

a
G

eo
rg

ia
Id

ah
o

Ill
in

oi
s

In
di

an
a

Io
w

a
Ka

ns
as

Ke
nt

uc
ky

Lo
ui

si
an

a
M

ai
ne

M
ar

yl
an

d
M

as
sa

ch
us

et
ts

M
ic

hi
ga

n
M

in
ne

so
ta

M
is

si
ss

ip
pi

M
is

so
ur

i
M

on
ta

na
N

eb
ra

sk
a

N
ev

ad
a

N
ew

 H
am

ps
hi

re
N

ew
 J

er
se

y
N

ew
 M

ex
ic

o
N

ew
 Y

or
k

N
or

th
 C

ar
ol

in
a

N
or

th
 D

ak
ot

a
O

hi
o

O
kl

ah
om

a
O

re
go

n
Pe

nn
sy

lv
an

ia
R

ho
de

 Is
la

nd
So

ut
h 

C
ar

ol
in

a
So

ut
h 

D
ak

ot
a

Te
nn

es
se

e
Te

xa
s

U
ta

h
Ve

rm
on

t
Vi

rg
in

ia
W

as
hi

ng
to

n
W

es
t V

irg
in

ia
W

is
co

ns
in

W
yo

m
in

g

destination

or
ig

in

trade volume
0−1

1−10

10−100

100−1000

1000−10000

above 10000

C



 34 

A 

 

B 

 
FIGURE 2. CHANGES IN TRADE FLOWS UNDER SEVERE DROUGHT: NEBRASKA 

Notes: The chord diagrams show the trade flows from/to Nebraska in 2007 when the state experienced regular 
weather conditions (panel A) and in 2012 when it suffered from a severe drought (panel B).   
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FIGURE 3. RESULTS FOR THE EXTENSIVE AND INTENSIVE TRADE MARGINS  

Notes: The figure shows the point estimates (with the 95% confident interval) of the severe drought impact on the 
extensive margins (panel A) and intensive margins in monetary terms (panel B) and intensive margins in physical 
terms (panel C) of agricultural trade flows. artner   

partner 
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FIGURE 4. AVERAGE OF THE DIRECT EFFECT (A), INWARD SPILLOVER EFFECT (B) AND OUTWARD SPILLOVER 
EFFECT (C) OF ONE ADDITIONAL WEEK OF SEVERE DROUGHT 
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FIGURE 5. THE AVERAGE MITIGATION EFFECT OF TRADE 

Notes: The figure shows the map and histogram of average mitigation effect of trade over four different climate 
models.   
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TABLE 1 ¾ DATA SOURCES AND DESCRIPTION 

Notation Description Sources Usage 

Xij Interstate trade flows of agricultural goods FAF4 Gravity equation (dep. var.) 

Tij Travel time between the most populous cities  Shapefile Gravity equation 

Cij Common boarder dummy Shapefile Gravity equation 

Hij Intra-state trade dummy Shapefile Gravity equation 

GDPfm Farm industry GDP in the origin  BEA Gravity equation 

GDPfd Food manufacturing GDP in the destination  BEA Gravity equation 

DD Growing degree days in both origin and destination  NARR Gravity equation and Ricardian analysis 

RN Total precipitation in both origin and destination NARR Gravity equation and Ricardian analysis 

DT Severe drought days in both origin and destination NARR Gravity equation and Ricardian analysis 

y Profit per acre for crop production farms USDA NASS Ricardian analysis (dep. var.) 

PD Population density  Census Bureau Ricardian analysis 

PI Per capita income  BEA Ricardian analysis 

N/A Bioenergy capacity in the destination  USDA ERS Robustness checks 

N/A Total population in the destination  Census Bureau Robustness checks 

N/A Crop stock in the end of previous year USDA NASS Robustness checks 

Notes: Notation, description, data source and usage of the variables used in equations (6) and (7). 
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TABLE 2 ¾ ESTIMATION RESULTS FOR THE GRAVITY EQUATION (6) 

 OLS  PPML 

 (1) (2)  (3) (4) 

Common Border  1.611** 1.617**  1.015** 1.006** 

 (0.153) (0.154)  (0.227) (0.227) 

Travel Time  -1.920** -1.911**  -0.607** -0.631** 

 (0.134) (0.134)  (0.118) (0.115) 

Drought Days (Orig.) -0.044+ -0.061+  -0.030 -0.029 

 (0.026) (0.033)  (0.025) (0.032) 

Drought Days (Dest.) 0.055* 0.002  0.069** 0.089* 

 (0.027) (0.033)  (0.026) (0.036) 

GDP (Orig.) 1.358** 1.366**  0.772** 0.781** 

 (0.045) (0.046)  (0.089) (0.095) 

GDP (Dest.) 1.026** 1.024**  0.456** 0.458** 

 (0.039) (0.039)  (0.051) (0.051) 

Remoteness Index (Orig.) 2.650** 2.694**  1.152* 1.189** 

 (0.410) (0.416)  (0.455) (0.460) 

Remoteness Index (Dest.) 3.208** 3.291**  0.446 0.630 

 (0.423) (0.451)  (0.639) (0.729) 

Degree Days (Orig.) -0.021 0.019  0.150 0.117 

 (0.273) (0.282)  (0.348) (0.371) 

Degree Days (Dest.) 0.874** 1.021**  0.535 0.597 

 (0.255) (0.271)  (0.357) (0.382) 

Precipitation (Orig.) -0.347* 0.008  -0.148 -0.144 

 (0.149) (0.203)  (0.170) (0.255) 

Precipitation (Dest.) 0.199 0.419*  0.505** 0.723** 

 (0.150) (0.211)  (0.190) (0.257) 

Home by year FE Yes Yes  Yes Yes 

Year FE Yes No  Yes No 

Climate region dyadic FE Yes Yes  Yes Yes 
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Climate region by year FE 
(exporter and importer) 

No Yes 
 

No Yes 

Num. of obs.  6401 6401  9216 9216 

Adj. R squared  0.551 0.568  0.827 0.834 

Notes: Standard errors in parentheses, + p < 0.10, * p < .05, ** p < .01.  
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TABLE 3 ¾ ALTERNATIVE SPECIFICATIONS OF THE GRAVITY EQUATION  

 

Drought days in the 
origin state 

 Drought days in the 
destination state 

Estimates Standard 
error 

 Estimates Standard 
error 

Benchmark (from column 4 of Table 2) -0.03 (0.03)  0.09* (0.04) 

Robustness checks:      

(1) use USDA farm production region  0.03 (0.25)  0.07* (0.02) 

(2) use one side exporter/importer-by-year FEs -0.03 (0.03)  0.09** (0.03) 

(3) trade flows for cereal grain only (SCTG02) -0.03 (0.04)  0.12** (0.05) 

(4) trade flows for other crops only (SCTG03) -0.02 (0.03)  0.06* (0.05) 

(5) trade flows in volume measure (SCTG02) -0.04 (0.05)  0.10* (0.05) 

(6) trade flows in volume measure (SCTG03) -0.03 (0.03)  0.09* (0.04) 

(7) drought during growing season -0.04 (0.04)  0.09* (0.04) 

(8) drought during last 3 months of growing season -0.00 (0.04)  0.09* (0.05) 

(9) add total population and crop stock  -0.03 (0.04)  0.09* (0.05) 

(10) add ethanol and biodiesel capacity  -0.04 (0.05)  0.13** (0.05) 

Notes: Standard errors in parentheses, + p < 0.10, * p < .05, ** p < .01.  

 

 

 


