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Abstract: Due to the concentration of assets in disaster-prone zones, changes in risk landscape 

and in the intensity of natural events, property losses have increased considerably in recent 

decades. While measuring these stock damages is common practice in the literature, the assessment 

of the economic ripple effects due to business interruption is still limited and available estimates 

tend to vary significantly across models. Given the myriad of proposed input-output models in the 

disaster literature, this paper reviews the most used methodologies (the traditional Leontief model, 

Cochrane’s rebalancing algorithm, the sequential interindustry model, the dynamic inoperability 

input-output model and its inventory counterpart) and compares the total losses they generate. We 

also highlight the nuances of the input-output framework that have been overlooked by applied 

researchers. As a common benchmark, we analyze the first and higher-order flow effects of the 

Chehalis river flood that took place in Washington State in 2007. In order to quantify the direct 

damages, we rely on fine-scale water depth-grids from the U.S. Army Corps of Engineers and the 

widely used HAZUS software. The results indicate a difference of 69% to 115% in the estimation 

of total losses across models, hence a careful model selection based on the characteristics of the 

disaster, of the affected region(s) and on the knowledge of the inoperability and intersectoral 

interdependency is needed. Such efforts will help us understand the level of vulnerability of our 

economic systems and be better prepared for future events. 
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1. INTRODUCTION 

 

Major disaster databases (Emergency Events Database (EM-DAT), Natural Hazards 

Assessment Network (NATHAN), Spatial Hazard Events and Losses Database for the United 

States (SHELDUS)) tend to compile only stock losses, i.e. damages to physical or human capital, 

as these are routinely collected and reported in the aftermath of a disaster(1). In the case of floods, 

the National Weather Service is required to provide monetary estimates of damages for all such 

events in the US, with special attention to property damages(2). They are measured by determining 

the amount of physical destruction and the associated repair costs. Estimation is performed via 

engineering models (traditionally damage-depth functions for floods) and the results can be 

validated through actual post-event assessment from public (local governments) and/or private 

(insurance companies) entities. Given their availability and the simplicity of the estimation, stock 

losses are widely used in hazard mitigation planning, especially in cost-benefit analyses. However, 

they offer only an incomplete picture of the economic impacts by not portraying the business 

interruptions they induce either locally or in their trade partners.  

Conversely, flow losses provide a more comprehensive view as they account for the direct 

loss in production due to capital damages (first-order effects according to Rose(3)) and for 

spillovers to non-affected industries and regions (higher-order effects). These ripple effects can be 

significant if major industrial chains are disrupted or infrastructure is compromised. For instance, 

the 1993 Midwest flood halted freight in the Mississippi River, highways and rail lines along the 

inundated areas leading to $2 billion in losses. Damaged crops in Iowa caused flow losses of $3.6 

billion in the state(4). More recently, physical damage from the 2012 Hurricane Sandy caused direct 

and indirect losses totaling $1.2 billion in New Jersey due to a plunge in tourism spending(5). 
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In the disaster literature, detailed data on flow losses are limited and usually incomplete, as 

a comprehensive survey would entail tracking businesses inside and outside the affected area for 

an extensive time length. Most studies on business recovery are geographically constrained to the 

affected region and qualitative. In addition, few of them provide a long-term assessment that 

extends beyond the reconstruction phase. Exceptions are Tierney(6) on the impact of the Northridge 

earthquake in the Greater Los Angeles area and Green et al.(7) on the 2007 Chehalis flood in Lewis 

County which is part of our study area. 

Due to these issues, several economic models have been proposed to assess flow losses. 

Most of them are rooted in the Input-Output (IO) framework that models linkages and feedbacks 

between the productive sectors of an economy. However, a lack of consensus on a preferred model 

has led to an increasing number of alternative specifications with varying results(8). In order to 

exemplify the model selection dilemma a practitioner has to face as well as the difference in the 

various models’ capacity to assess sectorial vulnerability and overall losses, which can lead to 

dramatically distinct disaster relief efforts, we focus on the same event – the 2007 Chehalis flood 

in Washington State – but under the lens of the five most applied IO models in the literature. They 

are the traditional Leontief model(4), Cochrane’s rebalancing algorithm(9), the sequential 

interindustry model(10), the dynamic inoperability IO model(11) and its inventory counterpart(12). 

Moreover, we highlight some common theoretical misconceptions in the application of these 

models when translating stock damages into flow impacts. 

In order to investigate these issues, the next section offers a review of the above models. 

Section 3 describes the benchmark event and the bridge between physical damages and the IO 

framework. Section 4 discusses and compares the results of each model, and section 5 concludes 

and offers some recommendations for future disaster analysis studies.  
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2. METHODOLOGY 

 

A non-exhaustive literature review of the methodologies used for flow loss estimation is 

available in Okuyama(13) and Przyluski and Hallegatte(14). Among those, IO, computable general 

equilibrium (CGE) and econometric models comprise the most used frameworks in the field. The 

strength of an econometric approach derives from estimations based on historical data. They 

provide a statistical base for forecasting, but time-series usually convey limited information on 

future disasters due to their infrequency and idiosyncrasy. Furthermore, their large majority 

overlooks interregional effects. As a result, the estimated marginal effects are not generalizable 

and most models represent partial equilibrium only(15). CGE models, on the other hand, provide a 

more comprehensive view of total flow impacts as they capture production chain linkages across 

various industries and regions as well as the flow of income across industries, factors and 

institutions. They provide a greater degree of flexibility when modeling supply-demand co-

movements, such as allowing non-linear specifications, substitution effects and behavioral 

responses(16). Their weakness derives from large data requirements and the technical knowledge 

needed to build the model. Greenberg et al.(15) highlight that the source of many behavioral 

parameters is usually questionable. When the lack of regional data makes their estimation at the 

local level unfeasible, they are regularly “borrowed” from national or international studies, which 

may lead to biases. Oosterhaven(17) adds that it is a challenge to separate short-run input 

substitution, which is fairly minimal, with more flexible long-run substitution effects. 
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Furthermore, optimizing behavior assumptions coupled with input substitutability lead these 

models to underestimate impacts according to Przyluski and Hallegatte(14) and Meyer et al.(18). 

Despite a more restricted focus on productive activities and rigidity in terms of inputs 

substitution and prices, the IO framework offers several advantages. It captures the economic 

linkages between industries and regions, hence allowing to quantify the spread of disruptions in 

production chains. It also has the benefit of portability in that the same methodology can be applied 

to structurally different regions and the results can be compared. Its relatively lower data 

requirement in comparison to CGE models or survey analysis allows for easy deployability, and 

forecast capacity as simulations on future events or diverse set of constraints can be performed. 

Regarding the disaster literature, IO also permits an easy integration with external models (e.g. 

engineering models) and a more accurate portrait of the industrial short-run behavior after 

disruptions, when rigidities restrict substitution effects(17). 

Among the various IO specifications applied in the literature, the traditional Leontief 

demand-driven model is one of the simplest and most popular (see Miller and Blair(19), for a 

detailed explanation). It assumes linear production functions with perfectly complementary inputs 

that are portrayed in the direct input requirement table 𝑨. Total output is a function of the 

interdependencies among industries presented in the Leontief inverse matrix (𝑰 –  𝑨)−1 and the 

final demand to be supplied in the period (𝒇). Impact analysis is performed by estimating the 

Leontief inverse, changing the demand vector to reflect conditions post-disaster (�̅�∗) and pre-

multiplying it by the original Leontief inverse to obtain the post-disaster output 𝒙∗ (Eq. 1). 

 

𝒙∗(𝑡) = (𝑰 − 𝑨)−1�̅�∗(𝑡) (1) 
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Total flow losses per period are easily retrieved by subtracting the pre-disaster output from 

the post-disaster output. This is the approach used by Changnon(4) to assess the flow impacts of 

the 1993 Midwest flood and by WSDOT(20) in estimating the total economic impact of the I-5 and 

I-90 highways closures during the 2007 Chehalis flood. 

In the traditional Leontief model, it is assumed that production is simultaneous and 

contained in each time period, i.e., all the output necessary to attend a given final demand is 

produced within the time interval without any lag. Moreover, there are no trade constraints nor 

supply constraints for production. The model is demand-driven so that supply constraints are 

captured through demand reductions by applying the corresponding capacity constraint (𝛾𝑖) to 𝒇 

(Eq. 2). 

 

𝑓�̅�
∗(𝑡) = (1 − 𝛾𝑖(𝑡))𝑓𝑖     ∀𝑖, 𝑡 (2) 

 

This simplified model has severe issues in modeling disruptive events. By assuming 

constant local input requirement coefficients throughout the aftermath of the disaster, it cannot 

incorporate input substitution effects due to local supply constraints. The static nature of the model 

combined with the assumption of production simultaneity limits the scope of the analysis by 

restricting disruptive leakages within and between production chains and through time. Safety 

inventories, that traditionally smooth volatile periods, are also not accounted for in the model. 

Therefore, the recovery process portrayed is negatively biased (i.e. it underestimates losses) as, 

despite demand changes, the rest of the economy is constant from the pre-disaster scenario. 

In order to incorporate supply constraints explicitly in the demand-driven model, 

Cochrane(9) and Oosterhaven and Bouwmeester(21) propose a rebalancing of the post-disaster IO 
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table. The latter relies on an interregional IO (IRIO) table to recalculate the flows inside and 

outside the affected region. Given the post-disaster output and trade constraints, a nonlinear 

programming model that minimizes information gains recalculates the economic flows to support 

the post-disaster final demand. The implementation of this methodology, however, requires an 

IRIO table that is usually not readily available to the researcher. As input substitution can only 

occur with exogenous foreign sectors, the case of a single region requires additional assumptions 

on trade flexibility. A simpler single-region rebalancing algorithm was introduced by Cochrane(9). 

It is the one used by HAZUS (HAZard US), a standardized hazard risk assessment tool created by 

the Federal Emergency Management Agency (FEMA) and widely used in mitigation planning and 

cost-benefit analysis. The iterative routine checks for excess supply/demand, existing flexibility in 

inventories and trade, and reallocates production accordingly (Fig. 1). 

 

<< INSERT FIGURE 1 HERE >> 

 

 The rebalanced IO table reflects the new steady-state of the economy at each time period. 

If one assumes no trade constraints nor inventories, the rebalancing algorithm can be directly 

implemented in the Leontief model by pre-multiplying the input requirement table by a matrix of 

post-disaster remaining capacity (𝑰 − 𝚪(t)), where 𝚪(t) is a diagonal matrix with 𝛾𝑖(𝑡) as the non-

zero elements (Eq. 3). 

 

𝒙∗(𝑡) = (𝑰 − (𝑰 − 𝚪(t))𝑨)−1�̅�∗(𝑡) (3) 
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This model overcomes the supply-demand incompatibility of the Leontief model, relaxing 

the previous assumption of constant economic structure and mitigating its bias. Nonetheless, all 

constraints are exogenously imposed and new production restrictions cannot arise endogenously. 

Moreover, the static nature of these models still implicitly assumes that the effects of the disruption 

are contained within the set time interval, as if production was not a continuum. The amount of 

bias is related to the length of the model’s time interval as shorter periods ignore larger 

intertemporal disruptive “leakages” to future production. 

As highlighted by Cole(22) and Romanoff and Levine(23), the idea of an instantaneous 

production process is unrealistic, as contractual obligations and production delays can linger in the 

economic system for several months, thus influencing output inter-temporally. A dynamic 

approach is therefore needed to accurately assess the total impact of a disaster. One of the first 

works attempting to incorporate dynamics in disruptive events is the time-lagged model proposed 

by Cole(22,24) and applied to industrial plants closure. Its core assumption is that the spread of 

income shocks in the economy suffers different levels of inertia (lags) at various points of the 

supply/demand chain that the instantaneous model ignores. However, Cole advocates for the 

endogeneization of all flows in the IO table, which makes the model theoretically inconsistent, not 

solvable and led to criticism by Jackson et al.(25), Jackson and Madden(26) and Oosterhaven (27).   

An alternative dynamic formulation is the Sequential Interindustry Model (SIM). Proposed 

by Romanoff and Levine(23) and based on the series expansion of the Leontief inverse, it introduces 

production timing in the IO framework. While developed before Cole’s model, it was applied to 

disaster contexts much later(10). In the SIM, industries are classified according to three production 

schedules: anticipatory, just-in-time or responsive. The former type is related to sectors that 

produce before orders are placed. They anticipate the demand as their production process is lengthy 
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and goods are standardized. Primary sectors and manufacturing fall in this category. Responsive 

sectors such as construction receive orders before they start production; while just-in-time sectors 

have short production lengths, so they can supply demand in the same period. Time is discretized, 

it is assumed constant, the same for all industries and synchronized across sectors. The Core SIM 

is derived from the supply-demand identity in the IO table: 

 

𝑥𝑖(𝑡) ≡∑𝑧𝑖𝑗(𝑡)

𝑗

+ 𝑓𝑖(𝑡)    ∀𝑖, 𝑡 (4) 

 

 Partitioning the traditional input requirement table (𝑨) between the different production 

types (𝑨𝒂: anticipatory; 𝑨𝒋: just-in-time; and 𝑨𝒓: responsive), we derive one equation for each 

“pure” production mode: 

 

𝒙(𝑡) = 𝑨𝒂𝒙(𝑡 + 1) + 𝒇(𝑡) 

𝒙(𝑡) = 𝑨𝒋𝒙(𝑡) + 𝒇(𝑡) 

𝒙(𝑡) = 𝑨𝒓𝒙(𝑡 − 1) + 𝒇(𝑡) 

 

(5) 

Then, a mixed model for the economy is derived by combining all production modes: 

 

𝒙(𝑡) = 𝑨𝒂𝒙(𝑡 + 1) + 𝑨𝒋𝒙(𝑡) + 𝑨𝒓𝒙(𝑡 − 1) + 𝒇(𝑡) (6) 

 

Notice that the traditional IO model is a special case of the SIM when all industries are 

just-in-time. Hence, the Core SIM reproduces the same accumulated total losses from the 
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traditional Leontief model but spreads them through time. However, it relies on a set of strong 

assumptions such as perfect foresight of demand and perfect knowledge of interindustrial 

requirements(28), of changes in the economic structure and perfect sectoral adaptability to the 

disruption (no inventories). Romanoff and Levine(29,30) have remedied some of these issues by 

including inventories, post-disaster technology changes and delivery delays, but their 

implementation is not straightforward(10). In addition, the system’s inoperability in the SIM is inter-

temporal only to the extent that intra-temporal impacts are carried over via production lags.  

On the other hand, the Dynamic Inoperability Input-Output Model (DIIM) proposed by 

Lian and Haimes(11) aims at introducing a framework that bridges intra-temporal and inter-

temporal inoperability. The DIIM is the dynamic version of the Inoperability Input-Output 

Model(31,32) that we do not cover in this review given that it offers no methodological advances 

compared to the traditional IO model(17,33). 

DIIM is based on the classic Leontief Dynamic model which assumes that current output 

accounts for both the production required to attend current demand and any required capital to 

attend production in the next period via the capital formation matrix 𝑩 (Eq. 7). 

 

𝒙(𝑡) = 𝑨𝒙(𝑡) + 𝒇(𝑡) + 𝑩[𝒙(𝑡 + 1) − 𝒙(𝑡)] (7) 

 

While the Leontief’s model is a growth model, the DIIM models a recovery process where 

the economy moves back to the pre-disaster steady-state. Hence, the capital formation matrix is 

replaced by a resilience matrix 𝑲 = �̂� that represents the speed at which the pre- vs. post-disaster 

production gap closes (Eq. 8). 
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𝐵=−�̂�−1

⇒     𝒙(𝑡) = 𝑨𝒙(𝑡) + 𝒇(𝑡) − 𝑲−1[𝒙(𝑡 + 1) − 𝒙(𝑡)] 

⟺ 𝒙(𝑡 + 1) = 𝒙(𝑡) + 𝑲 [𝑨𝒙(𝑡) + 𝒇(𝑡) − 𝒙(𝑡)] 

(8) 

 

Taking 𝑡 = 0 as the first period post-disaster and 𝑡 = 𝑇𝑖 the time industry 𝑖 takes to recover 

to a target (minimal) level of inoperability 𝑞𝑖, the interdependency recovery rate 𝑘𝑖 is defined as: 

 

𝑘𝑖 =
ln (
𝑞𝑖(0)

𝑞𝑖(𝑇𝑖)
⁄ )

𝑇𝑖(1 − 𝑎𝑖𝑖)
 

(9) 

 

Notice that Eq. 9 defines an exponential recovery path. Moreover, the leakage of 

inoperability among industries and their inertia in the system depends on the size of 𝑲. The larger 

is 𝑲, the faster is the recovery. In their original exposition, all matrices are normalized with the 

pre-disaster total output levels: 𝒒(𝑡) = [�̂�−1(𝒙 − 𝒙∗(𝑡))], 𝒄∗(𝑡) = [�̂�−1(𝒇 − �̅�∗(𝑡))] and 𝐀∗ =

[�̂�−1𝑨�̂�], which yields the model: 

 

𝒒(𝑡 + 1) = 𝒒(𝑡) + �̂� [𝐀∗𝒒(𝑡) + 𝒄∗(𝑡) − 𝒒(𝑡)] (10) 

 

 The connection between intra-temporal and inter-temporal inoperability is embedded in 

Eq. 10 where an increase in current inoperability creates contemporaneous supply constraints that 

also influence the next period, hence accounting for both effects. One could criticize the DIIM for 

assuming all industries operate in anticipatory mode and use the previous period’s final demand 

and production imbalance as the expected output level. Moreover, an ad-hoc proportional rationing 

rule is implicitly assumed to redistribute reduced output, there are no trade constraints and 
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inventories are not available to mitigate inoperability. With regards to the latter issue, Barker and 

Santos(12) extended the DIIM to include finished goods inventories (𝐼𝐹) which magnitude defines 

a sector-specific inoperability 𝑝 distinct from the overall inoperability 𝑞. As such, they introduce 

a sector-specific recovery coefficient (𝑙𝑖) similar to 𝑘𝑖 in Eq. 9 that informs the speed of recovery 

from a physical inoperability (Eq. 11). 

 

𝑙𝑖 =
ln (
𝑝𝑖(0)

𝑝𝑖(𝑇𝑖)
⁄ )

𝑇𝑖
 

(11) 

 

Different functional forms could be applied to the recovery function, but Barker and 

Santos(12) use the following: 

 

𝑝𝑖(𝑡) = 𝑒
−𝑙𝑖𝑡𝑝𝑖(0) (12) 

 

 Initial overall inoperability conditions 𝑞𝑖(0) are determined by the available finished 

goods inventory in the aftermath of the event (𝑰𝑭(0)) and by supply constraints (sector-specific 

inoperability post-disaster 𝑝𝑖(0)): 

 

𝑞𝑖(0) =  {

0
1 − 𝐼𝑖

𝐹(0) 𝑝𝑖(0)𝑥𝑖(0)⁄      

𝑝𝑖(0)

𝑖𝑓 𝐼𝑖
𝐹(0) ≥ 𝑝𝑖(0)𝑥𝑖(0)

𝑖𝑓 0 < 𝐼𝑖
𝐹(0) < 𝑝𝑖(0)𝑥𝑖(0)

 𝑖𝑓 𝐼𝑖
𝐹(0) = 0

 (13) 

 

 Hence, the evolution of each industry in the system depends on the remaining inventories 

in relation to the output constraints (Eq. 14). If inventories are numerous enough to supplant the 
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lost output, then a sector’s inoperability will depend solely on its own previous inoperability and 

on the one of the other sectors (condition 1). In case some inventory remains, but it is not enough 

to fully overcome the new production constraints, then the level of inoperability is mitigated 

proportionally (condition 2). If the inventories become depleted in the next period but are still 

positive in the current period, an additional supply constraint appears in the system, hence 

increasing the overall inoperability (condition 3). Finally, if there are no contemporaneous 

inventories, we revert back to the traditional DIIM model (condition 4). Any remaining inventories 

are updated at the end of each time step. 

 

𝑞𝑖(𝑡 + 1)

=  

{
 
 
 
 
 

 
 
 
 
 𝑞𝑖(𝑡) + 𝑘𝑖 [𝑐𝑖

∗(𝑡) − 𝑞𝑖(𝑡) +∑ 𝑎𝑖𝑗
∗ 𝑞𝑗(𝑡)

𝑛

𝑗=1
]  𝑖𝑓 𝐼𝑖

𝐹(𝑡 + 1) ≥ 𝑝𝑖(𝑡 + 1)𝑥𝑖(𝑡 + 1)

max {

𝑝𝑖(𝑡 + 1) − 𝐼𝑖
𝐹(𝑡 + 1) 𝑥𝑖(𝑡 + 1)⁄

𝑞𝑖(𝑡) + 𝑘𝑖 [𝑐𝑖
∗(𝑡) − 𝑞𝑖(𝑡) +∑ 𝑎𝑖𝑗

∗ 𝑞𝑗(𝑡)
𝑛

𝑗=1
]
𝑖𝑓 0 < 𝐼𝑖

𝐹(𝑡 + 1) < 𝑝𝑖(𝑡 + 1)𝑥𝑖(𝑡 + 1)

max {

𝑝𝑖(𝑡 + 1)

𝑞𝑖(𝑡) + 𝑘𝑖 [𝑐𝑖
∗(𝑡) − 𝑞𝑖(𝑡) +∑ 𝑎𝑖𝑗

∗ 𝑞𝑗(𝑡)
𝑛

𝑗=1
]
 𝑖𝑓 𝐼𝑖

𝐹(𝑡 + 1) = 0,  𝐼𝑖
𝐹(𝑡) > 0 

𝑞𝑖(𝑡) + 𝑘𝑖 [𝑐𝑖
∗(𝑡) − 𝑞𝑖(𝑡) +∑ 𝑎𝑖𝑗

∗ 𝑞𝑗(𝑡)
𝑛

𝑗=1
] 𝑖𝑓 𝐼𝑖

𝐹(𝑡 + 1) = 0,  𝐼𝑖
𝐹(𝑡) = 0

  
(14) 

 

 

Although the approach above assesses the impact of pre-disaster inventories of finished 

goods, it does not explain their formation nor accounts for the presence of material and supply 

inventories. Furthermore, the model lacks different production modes and trade constraints. It still 

assumes that the external sectors can absorb local imbalances by providing more imports and 

purchasing excess production. As the latter is unlikely in real situations, overproduction can further 

decrease local production due to additions to inventories. 
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A summary of the main characteristics of each of the models presented above is available 

in Appendix 1. In terms of issues regarding the application of IO models, two important 

misconceptions are recurrent in the empirical literature. First, since the IO framework is defined 

in terms of flows, stocks should not enter directly in the models. For instance, Hallegatte(34,35) 

allocates housing stock losses as direct output losses to the financial and real estate sectors. 

Moreover, since the total output of any tertiary sector represents payment for services provided 

within the time span of the table, housing damages have no connection to this sector in the IO 

framework but for the services of processing insurance claims. Second, transportation, retail and 

wholesale sectors are derived from margins, hence a transaction between sectors or final demand 

has two components: the portion paid to the industry that produced the good/service, and the 

portion covering shipping and sales costs. A clear implication is that these sectors cannot hold 

finished goods inventories because they only provide services. (12) mistakenly allocate finish good 

inventories to retail and wholesale sectors using BEA’s inventory-to-sales ratio. Similarly, Koks 

et al.(8) mistakenly assume that materials and supplies inventories for trade sectors represent 

merchandise for sale so that they find, unsurprisingly, that unrestricted inventories in retail have 

little effect in mitigating flood losses. Moreover, reconstruction stimuli should also account for 

these margins as correctly highlighted in HAZUS’ technical manual(36). Therefore, researchers 

willing to apply the IO framework should be aware of the methodology’s nuances and avoid the 

above misconceptions. 

Finally, another important factor that has not been considered in any of the available 

models in the literature is the role of seasonality in the economic structure. Intra-year fluctuations 

in production capacity have a significant impact on the magnitude and extension of the impacts by 

affecting inventory levels and the sectoral adaptive response. In Avelino(37), it is shown that the 
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bias in output multipliers from using an annual table instead of quarterly tables is up to 6% in 

either direction. 

 

3. CASE STUDY: THE 2007 CHEHALIS FLOOD 

 

In order to compare the results of the five IO methodologies listed above, we will rely on 

the same benchmark event: the 2007 Chehalis Flood in the state of Washington. Over December 

1-4 2007 a system of storms formed by an atmospheric river hit the U.S. West Coast and led to a 

record-breaking 14 inches of precipitation at the Willapa Hills which feed the main stems of both 

the Chehalis and the South Fork rivers. The surrounding areas experienced an additional 3-8 inches 

of rain. This event led to landslides, failed levees, overtopped dikes(38) and floods in western 

Washington and Oregon. Traditionally, this region experiences an average precipitation of 7-13 

inches for the entire October to March period(38). Most of the damage was concentrated alongside 

the Chehalis River Basin, southwest Washington. The flood extent is shown in Fig. 2 below. 

 

<< INSERT FIGURE 2 HERE >> 

 

 The counties of Grays Harbor, Thurston and Lewis were the most affected and were 

declared major disaster areas on December 8, 2007. Around 75,000 customers lost power and 

several roads became impassable(7). The cities of Centralia and Chehalis, both in Lewis County, 

sustained the most damage with 25% and 33% of their respective area inundated. It affected more 

than half of the commercial land-use and 32% of the industrial zones in the Centralia-Chehalis 

Urban Growth Area. The direct building damage in the county was assessed at $166 million. In 
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addition, around 10,702 acres of the 22,919 acres of agricultural land in western Lewis County 

were flooded at an estimated reseeding cost of between $188-$490 million(39). 

Damage to Interstate 5, the main corridor connecting Portland to Seattle, led to its closure 

to all traffic for 4 days. Flow losses estimates were calculated using a combination of business 

surveys and traditional IO analysis via IMPLAN (see section 3 of WSDOT(20) for a full discussion). 

Besides the $5 million in physical damage, WSDOT(20) estimates that $47 million in economic 

activity, $2.4 million in state tax revenue and $14.6 million in personal income were lost due to 

this event. 

However, when it comes to flow losses due to building damages, only a qualitative survey 

on local businesses was conducted(7). The study in Centralia and Chehalis comprising flooded and 

non-flooded businesses revealed that more than 80% of them had below average sales two weeks 

after the event and a third after two months. The main disruption channels reported were a loss of 

accessibility by road and a temporary absence of employees. Sales plunged due to flood-affected 

households and a smaller discretionary spending from non-impacted individuals. Nonetheless, 

businesses related to redistribution and recovery efforts showed above average sales in the survey. 

Overall, 31% of the local businesses expected to fully recover in a year and 20% in more than two 

years(7). 

The tri-county region impacted by the 2007 Chehalis flood has contrasting characteristics. 

While Grays Harbor and Lewis counties are more primary based economies with a significant 

commercial logging sector, Thurston County is a service based economy and is part of the Seattle-

metro area. Economic data for 2008 indicates that, in terms of total output and employment, 

Thurston is the largest and the most diversified economy among the three (Fig. 3). Lewis and 

Grays Harbor have similar sized economies with a combined output that is a third of Thurston’s. 
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The largest employers in Lewis County are government (17%), retail (13%) and manufacturing 

(13%) sectors. Grays Harbor experiences a somewhat similar economic structure (24%, 11% and 

13% respectively) whereas government and retail are the largest employers in Thurston County 

(34% and 11% of the jobs respectively). Most of the imported inputs in all counties are from the 

manufacturing sectors and payments for transportation services. 

 

<< INSERT FIGURE 3 HERE >> 

 

A Multiplier Product Matrices analysis(40) reveals that in our study area agriculture in 

general and its commercial logging activity in particular are the most intertwined sectors in terms 

of backward and forward linkages. We also find that manufacturing exhibits significant forward 

and backward linkages in Grays Harbor (especially between “Commercial Logging” and 

“Sawmills and Wood Preservation” sectors), while the service sectors are the most interconnected 

in Lewis and Thurston. As a result, any disruption affecting these key sectors will lead to additional 

inoperability in the other local sectors. 

 

3.1. Connection with the Economic Models 

 

Our methodology is composed of three components: flood water-depth grids from the 

atmospheric model, stock damages from the engineering model (HAZUS) and flow losses from 

the economic model (IO model). In this paper, the floodplain and water-depth maps are derived 

from the U.S. Army Corps of Engineers (USACE) and are used in HAZUS to estimate the physical 

damages to buildings, vehicles, crops and infrastructure via depth damage functions and 
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reconstruction timing. Both first and higher-order effects are then estimated using the range of IO 

models described above. Total flow losses in terms of output, income and jobs are calculated. The 

relationship between all these components is shown in Fig. 4. 

 

<< INSERT FIGURE 4 HERE >> 

 

This study relies on a fine scale estimate of floodplain and water-depth maps derived from 

the 2007 event. Observed data collected by the USACE from gauges along several river branches 

in the Chehalis basin were used in HEC-RAS to generate a water-depth map for the area(41). The 

engineering model (HAZUS) uses this water-depth grid to determine the total stock losses in each 

affected county. It has been the most widely applied model in the literature evaluating economic 

losses and performing cost-benefit analysis as it offers a balanced trade-off between modeling 

capability and required technical engineering knowledge(42).  

 HAZUS determines the percentage of damaged square footage by occupancy class at the 

census block level. Then, capital stock damages are measured in terms of repair costs, inventory, 

content, crop losses and vehicle replacement costs. Transportation infrastructure damage is only 

evaluated in terms of impacted bridges, so a comprehensive assessment of transportation 

disruption is lacking. The software provides estimates of first-order flow losses in business 

interruptions and rental income based on average sales data for the occupancy class. We detract 

from the latter and estimate both first and higher-order flow losses using the county’s IO table to 

have more accurate results. 

Natural disasters create constraints to production, thus leading to negative economic 

impacts. However, the reconstruction efforts that follow stimulate the local economy. Capacity 
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constraints 𝚪(t) are determined by assuming a homogeneous productivity per square foot for each 

industry in a specific county and that industries operate at full capacity before the disaster. Using 

information on crop losses, on damaged squared footage from the General Building Stock (GBS) 

as well as information about the economic sectors these buildings belong to (HAZUS occupancy 

class classification is matched to NAICS classification), we set the capacity constraints based on 

the pre-disaster total output by industry (Fig. 5). When it comes to agriculture’s output, it is reduced 

proportionally to the share of crop and livestock output in the county. Livestock losses are not 

considered independently as they are not reported by HAZUS. 

 

<< INSERT FIGURE 5 HERE >> 

 

The reconstruction demand 𝑹(𝑡) is determined by repair costs to the GBS, to the lifelines 

and the replacement of building content and vehicles. While the first two generate construction 

stimuli, the last two support demand in manufacturing. Given the reduced size of the affected 

counties, all the reconstruction stimuli are allocated outside the area. Following the HAZUS 

methodology, we assume that manufacturing orders include a margin to be split 20%-80% between 

transportation and wholesale (Fig. 6). 

 

<< INSERT FIGURE 6 HERE >> 

 

The total square footage per industry before the disaster (𝑠𝑖
𝑇), the damaged square footage 

(𝑠𝑖
𝐷) and the timing of the disruption are used to determine the capacity constraints and the reduced 

local final demand in the economic model. We also assume that recovery is proportionally 
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distributed through time according to the restauration timeframe provided by HAZUS. Details on 

these elements appear in tables 14.1, 14.5 and 14.12 of  FEMA(36). Based on this information, we 

define the level of inoperability of a particular industry 𝑖 at time 𝑡 as: 

 

𝛾𝑖(𝑡) =
𝑠𝑖
𝐷(𝑡)

𝑠𝑖
𝑇  (15) 

 

As mentioned on Eq. 3, the matrix (𝑰 − 𝚪(t)), where 𝚪(t) is a matrix with 𝛾𝑖(𝑡) in the main 

diagonal, represents the available production capacity for each industry at each time period in the 

post-disaster phase. 

Recovery efforts are compiled in the vector 𝑹(𝑡). Due to labor restrictions and 

displacement, final demand reduces from the pre-disaster level (𝒇) to �̅�. We assume that the 

expenditure structure remains fixed in the post-disaster period and that demand decreases 

proportionally to the plunge in income. Thus, in order to account for both capacity constraints and 

reduced household expenditure due to wage loss, we define the demand vector in the post-disaster 

period (�̅�∗) as: 

 

𝑓�̅�
∗(𝑡) = min ((1 − 𝛾𝑖(𝑡))𝑓𝑖, 𝑓�̅�(𝑡))      ∀𝑖, 𝑡 (16) 

 

Finally, we do not explicitly model interregional trade, but assume that given the small size 

of the affected counties’ economy relatively to the state of Washington, all imports are produced 

by the rest of the state and their production leads to negligible positive feedback to the affected 
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counties. Notice that the assumption of fixed prices holds here due to the small size of the affected 

region. 

Direct losses are estimated in HAZUS-MH version 3.0 using the default dasymetric 

datasets and assuming a warning time of 48h. It implies a 35% loss reduction in building damage 

according to the embedded Day Curve. No reduction in vehicle damage is assumed as no reliable 

source of information is available. As the software informs both day and night losses for vehicles, 

we follow the flood timing reported in NOAA(43) and select day losses for Grays Harbor and 

Thurston and night losses for Lewis County. 

We use the 2008 IO tables extracted from IMPLAN at a 16 sectors aggregation level. The 

sectors are presented in Table I alongside the assumptions used in the SIM and DIIM models. This 

level of aggregation was chosen to minimize incompatibilities when bridging HAZUS’ occupancy 

class classification and NAICS classification used by IMPLAN as shown in Appendix 2. 

 

<< INSERT TABLE I HERE >> 

 

The inventory data for the DIIM are based on the December 2007 inventory-to-sales ratio 

for manufacturing reported by the Federal Reserve Bank of St. Louis(44), as suggested in Barker 

and Santos(12). This not-seasonally-adjusted ratio is 1.23 for the period under study. It is 

homogeneously applied to all counties. Data for wholesale and retail are not considered as these 

sectors’ activities are recorded as margins, so they cannot hold finished goods inventories 

(although they can hold “materials and supplies” and “work-in-progress” inventories, which data 

are not available). 
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3.2. Stock Damages Estimates via HAZUS 

 

Physical damages are estimated at $680 million. As expected, the largest impact is in Lewis 

County. A breakdown of damages is provided in Table II. The only available counterfactual for 

direct losses is from Lewis County(39) where the total building losses (structure + inventory) were 

assessed at $166.2 million. Our HAZUS-based estimates lead to a figure of $150.9 million. This 

difference can be explained, in part, by the fact that our model estimates the total number of 

damaged structures at 439 when 957 of them were actually reported(39). Five fire stations were 

affected during the flood, at a total repair cost of $6 million(39); however, HAZUS does not report 

any impact. 

 

<< INSERT TABLE II HERE >> 

 

When it comes to the estimated square footage of damage per industry, most of the affected 

area is concentrated in Lewis County, followed by Grays Harbor and then Thurston (see Fig. 7). 

Agriculture, construction and health services are the main impacted industries, the latter being 

almost exclusively located in Lewis. In Grays Harbor and Thurston, agriculture is the main 

affected sector. These results appear in figures 8-10 below. 

 

<< INSERT FIGURE 7 HERE >> 

 

<< INSERT FIGURE 8 HERE >> 
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<< INSERT FIGURE 9 HERE >> 

 

<< INSERT FIGURE 10 HERE >> 

 

 

4. RESULTS AND DISCUSSION 

 

Considering the disruption timing set by default in HAZUS, we estimate a total direct 

output loss of $26.3 million over 25 months. First-order effects are the same across models. Health 

services, agriculture and manufacturing are the most affected sectors. Given the economic 

structure of the counties, Lewis has the most losses in the service sectors and Thurston the most 

losses in government activities (Fig. 7). Such loss of output translates into a $10.5 million decrease 

in direct labor income (Fig. 11). 

 

<< INSERT FIGURE 11 HERE >> 

 

Next, we use the five specifications described in Section 2 to estimate higher-order effects. 

The full results by model, county and sector are available in Appendix 3. It is clear that in all 

counties the accumulated losses are in-between the lower bound given by the Leontief model and 

the upper bound calculated by the DIIM (Fig. 12, 13 and 14). This difference varies from 69% to 

115% in Thurston and Grays Harbor respectively depending on which sectors are the most affected 

in each county and on their local linkages (Appendix 4). The results make it also obvious that, due 

to the truncation of intertemporal effects, static models suffer from a negative bias. 
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<< INSERT FIGURE 12 HERE >> 

 

<< INSERT FIGURE 13 HERE >> 

 

<< INSERT FIGURE 14 HERE >> 

 

When it comes to monthly losses by county (Fig. 15, 16 and 17), Cochrane’s model 

consistently shows the highest production plunges in the initial post-disaster periods when the 

economic structure is the most impaired. This highlights the importance of accounting for both 

capacity constraints and their implication to local interdependence. As the economy rebounds and 

returns towards its original steady state, Cochrane’s model approaches the traditional IO model 

estimates. 

Moreover, as the Leontief and Cochrane models are static, the initial inoperability does not 

spread inter-temporally, so there is a large loss in the first post-disaster months that fades quickly. 

The SIM distributes losses in time due to perfect foresight, so the efficient output path begins pre-

disaster and involves lower reductions in output. While we are aware that an event like the one 

studied here cannot be expected, it is important to recall that the SIM is originally designed for 

positive shocks. The DIIM creates an inertial inoperability effect that extends the length of the 

disruption. The exponential recovery assumption determines the shape of the curve. 

In the case of Grays Harbor, the primary sector is the one sustaining the most stock 

damages (2.7%) and also the one with most backward and forward linkages in the local economy. 

As a result, the inoperability it generates spreads significantly to other sectors. This reflects in the 
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37% difference between Leontief’s and Cochrane’s estimates (the largest difference of all 

counties). It now becomes clear that if highly interdependent sectors are affected and the economic 

structure is kept fixed, the bias is exacerbated. Besides agriculture and construction, government, 

manufacturing and professional services are indirectly affected. Notice also that by considering 

manufacturing inventories in the model, the total losses calculated by the inventory DIIM (noted 

Inv-DIIM) can be mitigated by 5.6%. 

 

<< INSERT FIGURE 15 HERE >> 

 

Lewis County is the most affected county with major damages to the health sector (4.6%), 

construction (2.8%) and agriculture (2.5%). Due to the high amount of direct losses, almost all of 

its sectors suffer some indirect negative impact, although the low interdependence of the affected 

sectors leads them to experience the largest losses. As such, health services are estimated to have 

lost between $12.2-19.3 million, while losses in manufacturing and agriculture sum up to $2.0-4.1 

million and $1.2-3.0 million respectively. Contrary to Grays Harbor, the difference in accumulated 

losses generated by the Leontief and the Cochrane models is significantly lower (only 8%) as their 

local linkages are reduced. Recovery is slower due to a long reconstruction time in the health sector 

while most other sectors rebound within 6 months. 

 

<< INSERT FIGURE 16 HERE >> 

 

Despite a similar pattern of damages in Thurston and Grays Harbor whereby agriculture 

and construction sustain the most stock reductions, total flow losses in Thurston are significantly 
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different due to differences in the economic structure. The agricultural sector is not integrated in 

the local economy as in Grays Harbor since Thurston is mainly service based and manufacturing 

inventories do not attenuate flow losses. As a result, the DIIM and the Inventory DIIM yield the 

same estimates. Moreover, the inoperability does not spread as much as in Grays Harbor County, 

so the flow losses are concentrated in the agriculture and construction sectors only (compare Fig. 

17 with 15). 

 

<< INSERT FIGURE 17 HERE >> 

 

 In summary, we compile the estimates for stock damages, flow losses and recovery time 

for each county. Thurston is the fastest county to recover with an overall negative impact of $4 

million. Conversely, Lewis’ $37 million losses spread throughout 2.5 years until full recovery 

(Table III). Notice the significant variation in high-order effects between lower and upper bound 

estimates. 

 

<< INSERT TABLE III HERE >> 

 

When it comes to the positive economic impacts from reconstruction, we find that the rest 

of Washington receives a direct stimulus of $680 million. It leads to a total impact of $957 million 

in that area. A comprehensive net effect on who bears the costs of reconstruction or on the 

investment/expenditure decisions it leads to is out of the scope of this paper. If we assume that all 

of the aid is external and that the regional economies return to their pre-disaster steady-state, the 
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total net effect for the state as a whole is positive: it is composed of a $52 million loss in the 

affected counties and of a $ 905 million gain in the rest of Washington. 

 

 

5. CONCLUSIONS 

 

Although stock damages are well understood, flow impacts taking place in the post-disaster 

period tend to be overlooked(8,18). As a result, mitigation strategies for future events are myopically 

applied to the affected economies only as if they had no spatial and temporal linkages. This partial 

account of impacts ignores the interconnectivity of modern production chains and may lead to 

significant negative effects to non-affected regions. 

The disaster literature has several models to assess flow losses and most of them are rooted 

in the IO framework. However, there exist no consensus on a preferred methodology. Therefore, 

researchers are often faced with a model selection issue based on the characteristics of the disaster, 

of the affected region(s) and on their assumptions on the mechanics of the local economy. 

In this paper, we use fine-scale characteristics of a single event, the 2007 Chehalis flood 

(WA), to calculate the flow losses that are generated by the five most commonly used models in 

the disaster literature. The results highlight their bias under different economic structures, level of 

industrial interdependency in affected sectors and amount of inoperability. We find that for each 

county the accumulated losses are in-between the lower bound given by the Leontief model and 

the upper bound calculated by the DIIM. This difference varies from 69% to 115% in Thurston 

and Grays Harbor respectively depending on which sectors are the most affected and on their local 

linkages. Static formulations (traditional IO and HAZUS) underestimate the losses by ignoring the 
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presence of intertemporal externalities. They truncate the inoperability impacts at each time period, 

which leads to a significant bias in the event of large disruptions as the recovery period is deemed 

shorter than it actually is. Moreover, modeling changes in the sectoral interdependencies between 

the pre- and post-disaster period is paramount when industries with strong backward and forward 

linkages are impacted. Finally, we show that the role of inventories depends on the external 

dependency of the affected sectors, so that estimates for mainly tertiary-based regions may not 

change significantly whether inventories are modeled or not. 

We also highlight that most of the common theoretical inconsistencies in the disaster 

literature derive from issues in integrating stock damages into a framework developed for flow 

analysis. Stocks should be introduced as primary inputs constraints (capital, labor, land) to analyze 

losses and later be converted into reconstruction stimuli via repair information to assess positive 

impacts. Furthermore, transportation and trade sectors are recorded as margins; hence IO 

practitioners should not consider that they hold finished goods inventories. Beyond these points of 

caution, we believe that the IO framework is still rich of opportunities for further methodological 

developments. For instance, efforts focusing on integrating both input and output inventories into 

a single framework and on developing a dynamic rebalancing of the local industrial linkages after 

a disruption are certainly needed. In addition, the role of the time of the event, of the seasonality 

in the economic structure and its implication on sectoral interdependency, inventories and 

resilience have been largely ignored in the literature. A solution for the former issue is to rely on 

intra-year IO tables that better reflect the industrial relationships at the time of the disaster. As 

shown by Avelino(37), highly seasonal sectors such as agriculture and services exhibit significantly 

different linkages across quarters, which are not captured using annual tables.  
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While the additional complexity of such extensions seems to conflict with the short timing 

emergency and disaster relief efforts have to work under, the more accurate and detailed analysis 

they generate informs us better of the current vulnerability of our economic systems and allow us 

to adapt more suitably to future events(13). 
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Figure 1. Cochrane’s rebalance scheme(9) 

 

 
Figure 2. Flood-depth grid for the Chehalis Basin 
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Figure 3. Share of output by sector, 2008 

   

 
 

Figure 4. Modeling approach overview 
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Figure 5. Bridge HAZUS-IO for Capacity Constraints 

 

 

 
 

Figure 6. Bridge HAZUS-IO for Reconstruction Stimuli 
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Figure 7. Initial inoperability by county 

 

 

 
Figure 8. Sectoral inoperability by month, Grays Harbor County 
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Figure 9. Sectoral inoperability by month, Lewis County 

 

 
Figure 10. Sectoral inoperability by month, Thurston County 
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Figure 11. First-Order Effects: direct labor income loss due to business disruptions 

 

 

 
Figure 12. Accumulated flow losses by model, Grays Harbor 
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Figure 13. Accumulated flow losses by model, Lewis 

 

 

 
Figure 14. Accumulated flow losses by model, Thurston 
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Figure 15. Monthly flow losses by model, Grays Harbor 

 

 

 
Figure 16. Monthly flow losses by model, Lewis 
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Figure 17. Monthly flow losses by model, Thurston 
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Table I. Input-output table disaggregation and assumptions 

IO Sectors Production Mode Hold Inventories 

11 Ag, Forestry, Fish & Hunting Anticipatory (3 months) Yes 

21 Mining Anticipatory (3 months) Yes 

22 Utilities Just-in-Time No 

23 Construction Responsive (1 month) Yes 

31-33 Manufacturing Anticipatory (1 month) Yes 

42 Wholesale Trade Just-in-Time No 

44-45 Retail Trade Just-in-Time No 

48-49 Transportation & Warehousing Just-in-Time No 

51-53 Information, Finance and Real Estate Just-in-Time No 

54-56 Professional, Mgmt. and Adm. Just-in-Time No 

61 Educational Services Just-in-Time No 

62 Health & Social Services Just-in-Time No 

71 Arts-Entertainment & Recreation Just-in-Time No 

72 Accommodation & Food Services Just-in-Time No 

81 Other Services Just-in-Time No 

92 Government & non-NAICs Just-in-Time No 

 

Table II. Direct Physical Damage by County, in 2008 Thousand dollars 

  Grays Harbor Lewis Thurston 

Agriculture 

Crops  $                    -     $                    -     $                    -    

Building Stock 

Capital Stock Losses 

 Building Loss  $           71,449   $         142,845   $           22,282  

 Contents Loss  $           52,366   $         192,622   $           23,731  

 Inventory Loss  $                977   $             8,079   $                357  

Vehicles 

   $          18,413   $          46,452   $            9,601  

Infrastructure 

Transportation  $                    -     $                    -     $                    -    

Utilities  $          26,719   $          31,567  $          20,040  

Essential Facilities       

 Fire Station   $                    -     $                    -     $                    -    

 Police Station  $                    -     $                    -     $                    -    

 Hospitals  $                    -     $                    -     $                    -    

 Schools  $            7,412  $            4,657   $                    -    

Total Physical Damage 

   $        177,336   $        426,221  $          76,011  
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Table III. Summary of Results, Lower and Upper Bounds 

 Grays Harbor Lewis Thurston 

Stock Damages  $ 177.34   $ 426.22  $ 76.01 

Flow Losses $ 3.86 - $ 7.84    $ 24.38 - $ 39.03 $ 2.95 - $ 4.97 

First-Order 95% - 47% 84% - 53% 73% - 43% 

Higher-Order 5% - 53% 16% - 47% 27% - 57% 

Full Output Recovery* 10 months 30 months 3 months 

*Below 1% inoperability 
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Appendix 1 – Main features of alternative input-output methodologies 

 

 IO HAZUS SIM DIIM Inv-DIIM 

Type static static dynamic dynamic dynamic 

Causality demand-driven demand-driven demand-driven demand-driven demand-driven 

Constraints demand 

demand 

supply 

trade 

demand demand 
demand 

supply 

Inventories no no no no yes 

Production simultaneous simultaneous time dependent simultaneous time dependent 

Market Clearing Implicit implicit implicit implicit implicit 

Prices constant constant constant constant constant 

Behavior perfect foresight perfect foresight perfect foresight perfect foresight perfect foresight 
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Appendix 2 – Bridge between IO disaggregation and HAZUS occupancy 

classes 

IO Sectors HAZUS Occupancy Classes 

11 Ag, Forestry, Fish & Hunting AGR1  

21 Mining - 

22 Utilities - 

23 Construction IND6 

31-33 Manufacturing IND1, IND2, IND3, IND4, IND5 

42 Wholesale Trade COM2 

44-45 Retail Trade COM1 

48-49 Transportation & Warehousing - 

51-53 Information, Finance and Real Estate COM5 

54-56 Professional, Management and Administrative COM4 

61 Educational Services EDU1, EDU2  

62 Health & Social Services RES6, COM6, COM7 

71 Arts-Entertainment & Recreation COM8, COM9 

72 Accommodation & Food Services RES4 

81 Other Services COM3, COM10, REL1 

92 Government & non-NAICs GOV1, GOV2 
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Appendix 3 – Comparison of total losses by sector and by county, 2008 constant dollars 

 

 

Note: we use Cochrane’s rebalancing algorithm as the base for the SIM. 

 

 

IO HAZUS SIM DIIM Inv-DIIM IO HAZUS SIM DIIM Inv-DIIM IO HAZUS SIM DIIM Inv-DIIM

11 Ag, Forestry, Fish & Hunting (0.98)$     (1.79)$     (1.81)$     (2.92)$     (2.90)$     (1.18)$     (1.77)$     (2.14)$     (3.01)$     (2.92)$     (0.36)$     (0.46)$     (0.47)$     (0.90)$     (0.90)$     

21 Mining (0.00)$     (0.00)$     (0.00)$     (0.00)$     (0.00)$     (0.02)$     (0.02)$     (0.21)$     (0.04)$     (0.03)$     (0.00)$     (0.00)$     (0.00)$     (0.00)$     (0.00)$     

22 Utilities (0.00)$     (0.00)$     (0.00)$     (0.00)$     (0.00)$     (0.39)$     (0.40)$     (0.61)$     (0.52)$     (0.49)$     (0.02)$     (0.02)$     (0.02)$     (0.02)$     (0.02)$     

23 Construction (0.47)$     (0.53)$     (0.56)$     (1.17)$     (1.17)$     (1.07)$     (1.16)$     (1.50)$     (2.59)$     (2.59)$     (0.20)$     (0.21)$     (0.27)$     (0.48)$     (0.48)$     

31-33 Manufacturing (0.44)$     (0.52)$     (0.69)$     (0.97)$     (0.57)$     (2.00)$     (2.08)$     (3.80)$     (4.11)$     (2.10)$     (0.03)$     (0.03)$     (0.12)$     (0.04)$     (0.04)$     

42 Wholesale Trade (0.09)$     (0.17)$     (0.17)$     (0.22)$     (0.20)$     (0.35)$     (0.46)$     (0.44)$     (0.62)$     (0.57)$     (0.21)$     (0.27)$     (0.27)$     (0.38)$     (0.38)$     

44-45 Retail trade (0.16)$     (0.17)$     (0.09)$     (0.21)$     (0.21)$     (1.74)$     (1.84)$     (1.83)$     (2.92)$     (2.91)$     (0.15)$     (0.16)$     (0.11)$     (0.20)$     (0.20)$     

48-49 Transportation & Warehousing (0.03)$     (0.04)$     (0.05)$     (0.05)$     (0.05)$     (0.19)$     (0.20)$     (0.48)$     (0.28)$     (0.26)$     (0.02)$     (0.02)$     (0.03)$     (0.02)$     (0.02)$     

51-53 Information, Finance and Real Estate (0.35)$     (0.41)$     (0.26)$     (0.50)$     (0.50)$     (2.43)$     (2.52)$     (1.81)$     (3.11)$     (3.07)$     (0.42)$     (0.44)$     (0.34)$     (0.50)$     (0.50)$     

54-56 Professional, Management and Administrative (0.21)$     (0.47)$     (0.47)$     (0.51)$     (0.51)$     (1.12)$     (1.84)$     (1.88)$     (2.25)$     (2.21)$     (0.22)$     (0.38)$     (0.37)$     (0.43)$     (0.43)$     

61 Educational svcs (0.01)$     (0.01)$     (0.01)$     (0.01)$     (0.01)$     (0.06)$     (0.07)$     (0.03)$     (0.07)$     (0.07)$     (0.02)$     (0.02)$     (0.02)$     (0.03)$     (0.03)$     

62 Health & social services (0.16)$     (0.16)$     (0.05)$     (0.16)$     (0.16)$     (12.19)$  (12.32)$  (12.32)$  (19.31)$  (19.31)$  (0.20)$     (0.20)$     (0.13)$     (0.20)$     (0.20)$     

71 Arts- entertainment & recreation (0.02)$     (0.02)$     (0.01)$     (0.03)$     (0.03)$     (0.18)$     (0.20)$     (0.19)$     (0.30)$     (0.30)$     (0.02)$     (0.02)$     (0.01)$     (0.02)$     (0.02)$     

72 Accomodation & food services (0.06)$     (0.07)$     (0.05)$     (0.08)$     (0.07)$     (0.41)$     (0.42)$     (0.35)$     (0.48)$     (0.47)$     (0.06)$     (0.06)$     (0.06)$     (0.07)$     (0.07)$     

81 Other services (0.06)$     (0.07)$     (0.07)$     (0.10)$     (0.10)$     (0.81)$     (0.89)$     (0.90)$     (1.38)$     (1.37)$     (0.03)$     (0.04)$     (0.05)$     (0.04)$     (0.04)$     

92 Government & non NAICs (0.79)$     (0.87)$     (0.86)$     (1.35)$     (1.35)$     (0.25)$     (0.27)$     (1.01)$     (0.36)$     (0.36)$     (0.98)$     (1.02)$     (1.02)$     (1.64)$     (1.64)$     

(3.86)$     (5.30)$     (5.16)$     (8.30)$     (7.84)$     (24.38)$  (26.45)$  (29.52)$  (41.34)$  (39.03)$  (2.95)$     (3.34)$     (3.29)$     (4.97)$     (4.97)$     

Lewis County Thurston CountyGrays Harbor County
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Appendix 4 – Comparison of total losses by sector and county 

 

 

 


