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Do crop insurance programs preclude their recipients from 

adapting to new climate conditions? 

 

 

Abstract: Concerns that federal crop insurance programs reduce the 

farmers’ willingness to adapt to adverse changes in climate are 

growing.  However, current evidence is limited to a small number 

of specific crops and relies on proxies for insurance payments. Here, 

we show how crop insurance programs modify the theoretical 

predictions of the Ricardian framework that accounts for all types of 

crops and many forms of adaptation to climate change. Furthermore, 

we exploit panel data on actual crop insurance payments to 

demonstrate empirically to what extent their magnitude and 

frequency bias the impact of climate change and extreme events on 

farmland value.  

Keywords: climate change, crop insurance, Ricardian approach 
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1. Introduction 

The enactment of the Crop Insurance Reform Act of 1994 paved the way for 

crop insurance to become the main pillar of the current U.S. farm subsidy system. 

Two decades later, the Agricultural Act of 2014 confirmed the Congress’s desire to 

keep expanding crop insurance programs to replace the direct payment programs. 

Today crop insurance costs the American tax payers around seven billion dollars 

each year and accounts for roughly 30 to 40% of the annual total agricultural 

subsidies budget since 2010 (Environmental Working Group, 2017).  

The literature has already documented that crop insurance can distort the 

farmers’ production decisions, such as land allocation, the choice of crop mix, the 

optimal amounts of input use and infrastructural investment (Goodwin and Smith, 

1995; Knight and Coble, 1997; Coble and Knight, 2002). However, over the recent 

years the focus has shifted on the impact of crop insurance programs on climate 

change adaptation behavior. For instance, Burke and Emerick (2015) highlight that 

they discourage U.S. corn and soybeans growers from being actively engaged in 

adaptation activities such as optimal uses of fertilizer and irrigation systems 

improvements. Indeed, these programs act as a moral hazard since farmers are 

aware that the government will compensate a large proportion of the actual 

damages caused by climate change. Anna and Schlenker (2015) provide additional 

evidence of such potential distortion effects in a crop production framework applied 

to the same two crops as above.  

However, given that U.S. farmers cultivate many other crops and can switch 

to other agricultural activities if needed, a more comprehensive conceptual 

approach and empirical evidence are needed. Our contribution consists in 

demonstrating that crop insurance programs distort the relationship between 

climate variables and farmland value, the relationship of interest in a Ricardian 

framework (Mendelsohn et al., 1994; Schlenker et al., 2005; Schlenker et al., 2006; 



4 

 

Deschênes and Greenstone, 2007). Our estimation strategy consists in, first, 

separating the farmers into two groups based on the net financial benefit they 

receive from crop insurance and, second, testing whether the marginal effect of the 

climate data differs significantly across groups. We identify the net recipient 

farmers as those who regularly receive a compensation that is larger than their 

annual payment. The other group of farmers corresponds to the actuarially-fair 

participants as their expected indemnity is equal to or slightly less than the premium 

they pay. Our conceptual model predicts that the sensitivity of the expected profit 

to changes in climate is lesser in the net recipient group than in the actuarially-fair 

group. The more a farmer relies on indemnity to compensate for his loss, the less 

his ex-post profit reflects his actual production conditions. The same reasoning 

holds true for farmland value, the dependent variable traditionally used in a 

Ricardian framework, since it represents the discounted sum of future profits.   

Based on data capturing the climatic, economic and geophysical 

characteristics of the continental U.S. counties over the four most recent USDA 

censuses, we test our theoretical predictions in a model with structural instability in 

the form of the two groups discussed earlier. Our regression results highlight the 

significant difference between groups and that, in the net recipient group, the 

magnitude and precision of the marginal effect of the climate variables are biased 

toward zero compared to the actuarially-fair group. These estimates are robust to 

numerous specification checks.  

To our knowledge, there are only three contributions that formally model the 

impact of overall farm subsidy payments in a Ricardian framework. The first one 

is Polsky (2004) that highlights how overall subsidies have a small positive effect 

on farmland values in the Great Plains. The second one is Massetti and Mendelsohn 

(2011) who, for a panel measured across the entire sample of the U.S. counties, find 

a slightly negative marginal effect. This unexpected negative effect is probably 
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caused by the endogeneity issue of subsidies that the authors fail to address. Finally, 

Dall’erba and Dominguez (2016) focus on the South-Western part of the U.S and, 

like Polsky (2004), they find a small but significant positive effect of subsidies. 

Their article is the only one among the three to control for the endogeneity of the 

subsidy payments through a two-stage-least-square approach. 

 The current manuscript distinguishes itself from the previous literature for 

three reasons. First, instead of pooling all forms of subsidies together, singling out 

crop insurance allows us to formally incorporate it into the Ricardian framework 

and to generate testable hypotheses regarding its impacts based on the behavioral 

model. Second, our approach enables us to measure directly the impact of crop 

insurance on the marginal effects of the climate variables whereas previous 

contributions use subsidies as just another control variable. In the latter case, the 

presence and the magnitude of the subsidies affect the marginal effect of the climate 

variables indirectly only. Third, our contribution is also different from Annan and 

Schlenker (2015) because they rely on a crop production function. Theoretically, 

the Ricardian approach assumes that any adaptation strategy can take place as long 

as it can be capitalized in farmland value. Therefore, it provides a larger array of 

options for adaptation, such as land use change, compared to those subsumed in a 

crop production approach (Miao et al., 2016).  

Another major difference with Annan and Schlenker (2015) is the choice of 

the variable measuring crop insurance. They work with the participation rate while 

this manuscript is based on the loss ratio which is defined as indemnity payments 

divided by the total premium. It represents the net benefit (or loss) farmers take 

from the program, which identifies the farmers’ desire to adapt to new climate 

conditions more precisely than the participation rate. Indeed, the latter does not 

guarantee that farmers receive financial benefits from the crop insurance program. 

Annan and Schlenker (2015) discover that a higher crop insurance participation rate 
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exacerbates the loss of corn and soybean yield caused by extreme degree-days1. 

Based on this evidence, they infer that crop insurance might discourage farmers 

from engaging in possible adaptation strategies, which, in turn, makes them more 

vulnerable to future extreme heat events. Given that the frequency and intensity of 

such events are expected to increase in the future according to the most recent IPCC 

report (IPCC, 2014), this process will have detrimental consequences for the US 

agriculture. 

In order to shed new lights into the role of crop insurance programs on the 

farmers’ desire to adapt to new climate conditions, this paper continues with an 

extension of the Ricardian framework. It shows that the response of land values to 

new climate conditions depends on whether the farmers are net crop insurance 

recipients or actuarially-fair participants. The following section lists the data 

sources, their summary statistics, and clarifies our model specification choices. In 

section 4, we present and discuss the estimation results while the last section 

summarizes the main findings and offers some concluding remarks.  

2. Conceptual Framework 

2.1    A formal theory of Ricardian analysis  

As usual in the Ricardian literature, our starting point is the one of a representative 

farmer who chooses to allocate his/her land to the most lucrative use over a set of 

feasible alternatives. The long-run equilibrium agricultural profit experienced from 

exploiting land i is written as follows: 

(1)        πi = max
j∈J
{pjfj[𝐱ij(pj, 𝐰, ci, θi); ci, θi] − 𝐰 ∙ 𝐱ij(pj, 𝐰, ci, θi) + εij} − Ri 

                                                           
1 Extreme degree-days are defined as the degree-days above certain harmful heat thresholds to crop growth. Annan and 

Schlenker (2015) set the thresholds based on those empirically discovered by Schlenker and Roberts (2009): 29oC for corn 
and 30oC for soybean.  
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Where j is the type of agricultural activity chosen among a set of locally doable 

J activities. The first term in the maximizing function is the revenue of operating 

activity j, i.e. the price of product j (pj ) times its output  fj[∙] . We denote the 

production function of activity j as a function of input 𝐱ij  and two groups of 

parameters, namely the climatic parameters ci and the non-climatic parameters θi. 

The second term in the maximizing function corresponds to the cost incurred. It is 

calculated as the product of the input price vector 𝐰 and of the vector of input 

use 𝐱ij. The farmer chooses inputs so as to maximize profits, hence the optimal 

input basket is driven by input and output prices as well as additional parameters in 

the production function: 𝐱ij(pj, 𝐰, ci, θi) ≡ argmax {pjfj[𝐱ij, ci, θi] − 𝐰 ∙ 𝐱ij}. The 

term εij  in the maximum parentheses is an additive zero-mean random error 

associated with the jth use of land. Its purpose is twofold. First, it captures the loss 

risk that is associated with any agricultural activity. Second, it can be viewed as a 

random error term as Schlenker et al. (2006) suggest. Last but not least, Ri is a fixed 

cost that corresponds to the land rent the farmer pays to the landlord.  

In a long run equilibrium where farmers freely enter or leave the market, the 

expected profit should be zero. By setting 𝔼(πit) = 0, Eq. (1) implies: 

(2)                                    Ri = pj∗fj∗[𝐱ij∗ , ci, θi] − 𝐰 ∙ 𝐱ij∗   

 Where 𝑗∗denotes the optimal use of land i and where the arguments of the 

optimal input use function 𝐱ij∗(∙) are suppressed for simplicity. Eq. (2) means that 

the long run land rent is equal to the net revenue obtained when the land is allocated 

to its optimal use.  

Finally, since the Ricardian approach assumes that the farmland market is 

efficient, then land values 𝑉 must equal the expected present value of future rents, 

that is: 
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(3)         Vi = ∑
1

(1+r)t
∞
t=0 Ri = (

1+r

r
) Ri = (

1+r

r
) {pj∗fj∗[𝐱ij∗; ci, θi] − 𝐰 ∙ 𝐱ij∗} 

Where r is the discount rate. Eq. (3) illustrates how farmland value reflects the 

long-run equilibrium relationship between local climate pattern and agricultural 

productivity. This result establishes the traditional rationale of the Ricardian 

analysis. However, the next section extends it to the presence of crop insurance 

programs that systematically dampen profit reduction due to poor harvest. 

2.2    The role of crop insurance in the Ricardian framework 

In essence, crop insurance is a policy that protects the farmers’ revenue against 

production uncertainty. A typical insurance policy is comprised of two parameters: 

the premium rate  𝑆  and the associated protected net revenue level  𝑀 . At the 

beginning of the growing season, a farmer pays 𝑆 to purchase the policy and, at the 

end of the season, if the net revenue realized is less than the protected level 𝑀, the 

farmer will receive the difference through an indemnity payment. The long-run 

equilibrium agricultural profit with crop insurance is therefore: 

(4)             πi = max
j∈J
{max{pjfj[𝐱ij, ci, θi] − 𝐰 ∙ 𝐱ij + εij, Mij} − Sij} − Ri 

It is worth noting that, compared to Eq. (1), the realized net revenue attained 

from operating activity j with crop insurance is at least equal to the protected 

revenue Mij minus the premium Sij. To highlight this point, we should consider the 

net revenue for the optimal activity j with crop insurance: 

πij = {
pjfj[𝐱ij, ci, θi] − 𝐰 ∙ 𝐱ij + ε̂ij − Sij − Ri, with probabity      dij

Mij − Sij − Ri                    , with probabity  1 − dij
 

Where  dij is the probability that the loss does not occur. The expected net 

revenue, therefore is 
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(5) 
𝔼[πij] = {pjfj[𝐱ij, cI, θi] − 𝐰 ∙ 𝐱ij + ε̂ij − Sij} ∙ (dij) 

+{Mij − Sij} ∙ (1 − dij) − Ri 

Again, the zero-profit assumption implies that: 

(6)      Ri
cp
= {pjfj[𝐱ij, ci, θi] − 𝐰 ∙ 𝐱ij + ε̂ij} ∙ (dij) + {Mij} ∙ (1 − dij) − Sij 

The associated land value is  

(7)     Vi
cp
= (

1+r

r
) {{pjfj[𝐱ij, ci, θi] − 𝐰 ∙ 𝐱ij + ε̂ij} ∙ (dij) + {Mij} ∙ (1 − dij)} 

Taking the partial derivative of Eq. (7) with respect to the climate variable ci, 

we get the marginal effect of climate on farmland value in the case of crop 

insurance.  

(8)               
𝜕Vi

cp

𝜕ci
= (dij) ∙ {(

1+r

r
)
𝜕

𝜕ci
{pjfj[𝐱ij, ci, θi] − 𝐰 ∙ 𝐱ij}}

⏟                      
<

= 
𝜕Vi
𝜕ci

𝜕Vi

𝜕ci
 

The term in the braces is the marginal effect of climate without crop insurance. 

We can verify it by taking the derivatives of Eq. (3) with respect to  ci . The 

inequality in Eq. (8) holds because dij is a probability, therefore, it is less than one. 

This inequality relationship establishes our main conclusion in terms of how crop 

insurance affects the response of land value to changes in climate. Crop insurance 

makes land value less sensitive to changes in climate.  

Furthermore, Eq. (8) implies that the extent of this attenuation effect depends 

on (1 − dij), i.e. the probability that loss occurs. The more likely a farmer suffers 

from a loss and receives indemnity, the less his land value responds to changes in 

climate. This observation motivates us to split the sample between the farmers who 

have a high probability to receive an indemnity (henceforth the net recipients) and 

those who have a low one (henceforth the actuarially-fair participants). Our 
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conceptual model predicts that a smaller marginal effect of the climate variables 

should be found among the net recipients.  

Finally, the Ricardian framework is essentially a hedonic method. Rosen 

(1974)’s classic interpretation of the hedonic equilibrium allows us to further infer 

the disincentive effect of crop insurance on farmers’ adaptation activities. 

According to Rosen, the marginal effect of the climate variables can be interpreted 

as farmers’ willingness to pay/accept for a favorable/unfavorable climate condition. 

Crop insurance reduces marginal effects, therefore lowers farmers’ willingness to 

pay for a better climate. And less willingness to pay indicates the less willingness 

to adapt to adverse changes in the future climate. 

2.3    An illustrative example with only two feasible activities  

[Insert figure 1 here] 

Figure 1 illustrates our conceptual framework. It is limited to two feasible activities 

for simplicity purposes. It is an extension of the figures found in Mendelsohn et al. 

(1994) and Deschênes and Greenstone (2007) where the expected net revenues are 

on the y-axis and temperature is on the x-axis. The net revenue curves for wheat 

and corn, the two activities we chose, represent how temperature affects the 

expected net revenues per acre due to planting each crop. Their quadratic shape and 

the capacity of the outer envelope to define the hedonic equilibrium are traditional 

in the literature and are explained in details in the above references.  

Panel (a) represents the well-known Ricardian mechanism by which a 

permanent increase in temperature from Ta to Tb would lead the farmer to switch 

his production from wheat to corn so that his revenue changes from A to Blong. 

While it appears as a drop compared to revenue A in our graphic example, it is 

equally likely that it represents a gain compared to A. What is certain is that it is a 



11 

 

better revenue outcome than Bshort where the farmer has not adapted to new climate 

conditions.  

Panel (b) assumes the similar climate change scenario but with the presence of 

crop insurance programs. The newly added vertical line represents the protected net 

revenue level of wheat production. As in Panel (a), the farmer starts at A, a point 

where expected net revenue of planting wheat is above the protected level. A 

warmer temperature causes the expected net revenue to drop below the protected 

level. Consequently, this wheat farmer would face an increasing probability of loss 

provided that his/her original insurance policy remains unchanged. In addition, the 

introduction of crop insurance alters the Ricardian reasoning behind Panel (a) in 

two profound ways. First, since crop insurance prevents the farmer’s ex-post net 

revenue from dropping below the protected level, he/she no longer has a clear 

incentive to switch from wheat to corn under the warmer climate. Traditionally, 

this switch is the adaptation strategy the farmer is expected to take without crop 

insurance. Second, crop insurance reshapes the outer envelope highlighted by a 

bold line that defines the hedonic equilibrium. This alteration of the hedonic curve 

corresponds to the diminished marginal effect of climate, as shown in our algebraic 

model.  

Panel (c) illustrates the attenuation effect using a truncated data analogy. The 

solid line is the regression line when we can observe the actual net revenue for all 

observations. The dashed line, on the other hand, is the regression line when several 

observations are truncated by the protected revenue set by the crop insurance 

programs. The dashed line is clearly flatter than the solid one, which means the 

marginal effects decrease with the presence of crop insurance.  

Before we move to the empirical section, we need to note two important points. 

First, the support revenue and premium rate are usually based on the applicants’ 

historical planting records. Everything else being equal, farmers who have longer 
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historical records of planting a specific crop are more likely to get better policy 

terms than those who have never planted it. As a result, crop rotation or the 

introduction of a new crop is not necessarily in the farmer’s best interest and 

adaptation through these means is hindered. Second, our simple model assumes that 

farmers pay the entirety of the policy premium by themselves. In reality, the 

introduction of the 1994 Crop Insurance Reform Act has encouraged participation 

by subsidizing the purchase of the premium rate. The average share of premium 

paid by farmers has dropped from 74% in 1994 to 38% in 2014 (Zulauf, 2016). As 

a result, the actual subsidies associated with crop insurance can be theoretically 

divided into two categories. One is used to finance the extra indemnity payment 

and the other one supports the premium. Unlike the former one, premium support 

does not distort the farmers’ decision to mix crops given that the premium support 

discounts are the same across crops, which is consistent with the current crop 

insurance practices in United States. Therefore, including subsidies for the purchase 

of the premium does not change the main results of our analysis. 

3   Empirical Model  

Empirical estimation of whether crop insurance programs reduce the sensitivity of 

farmland values to local climate conditions is not trivial. Such programs are 

determined by a set of endogenous factors such as a farm’s and its peers’ past 

revenues2 which do not satisfy the usual normality conditions. While Dall’erba and 

Dominguez (2015) have used an instrumental variable approach to provide 

unbiased and efficient estimates of these programs, we prefer to follow the 

theoretical framework above by identifying the marginal effects of various climate 

conditions on land value across the group of actuarially fair participants and the one 

                                                           
2 See Shields (2015) for more details on the criteria used to design crop insurance policies.  
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of the net recipients. We expect their difference to be statistically significant and 

climate to play a lesser role in the net recipient group.  

3.1    Data sources and processing issues 

Our estimation strategy is based on a panel dataset of farmland value, climate and 

soil quality variables measured over the 3,096 continental U.S. counties for the four 

most recent USDA censuses. We remove the urban counties from our sample 

because the possibility of converting farmland to urban development might largely 

inflate farmland values there (Plantinga et al. 2002). We follow Schlenker et al. 

(2006) setting the urban county threshold at 400 inhabitants per square mile. As a 

result, our final sample is composed of 2,813 rural counties. 

Our dependent variable is the (log of) average value of farmland and building 

per acre. Our independent variables can be classified into three categories: (1) the 

climate conditions; (2) a set of socioeconomic control variables namely population 

density, personal income per capita, irrigation ratio and fertilizer expenditure; and 

(3) nine soil quality control variables commonly used in the literature. Their 

description appears below. 

Climate Normal --- Our climate data come from the National Centers of 

Environmental Protection’s the North American Regional Reanalysis (NARR) 

product (Mesinger et al. 2006). The NARR dataset uses data assimilation methods 

to create a balanced panel of climate variables on a spatial grid from spatially 

unbalanced weather station observations. Data assimilation methods combine a 

physically-based climate model with actual weather station records to generate 

climate data where no weather station is present. They are more theory-based than 

the alternative approach called spatial extrapolation algorithms which achieves the 

same goal but merely relies on statistical techniques (Auffhammer et al. 2013). One 

example using the latter method is the commonly used Parameter-elevation 
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Regressions on Independent Slopes Model (PRISM) dataset from Oregon State 

University. While PRISM provides climate data on a monthly temporal resolution 

(Schlenker and Roberts, 2009), NARR provides measurements every 3-hours and 

at a 32-km spatial resolution for the period 1979-2014. Following Mendelsohn et 

al. (1994) and Schlenker et al. (2006), we decide to work with the four-season mean 

temperature and precipitation to capture the climate normal in a county. All 

variables are averaged over a 20-year period (1992 - 2012). In addition, we include 

the squared value of each of them to capture their non-linear effects.  

Extreme Weather Event --- As it is well-known that a changing climate is 

expected to increase the frequency and intensity of extreme weather events, we 

investigate their importance by defining droughts and wet spells on the Palmer 

Drought Severity Index (PDSI). PDSI measures the standard deviation of a given 

month's rainfall from its historical average. Its value ranges from +6 to -6 whereby 

a negative PDSI means the current precipitation is less than its historical average 

and corresponds to a drought. Therefore, we count a month as drought month if the 

monthly PDSI is between [-3, -6]. Similarly, a wet spell month is one for which 

PDSI is between [3, 6].  Then, we calculate the proportion of time a county was 

under either a drought or a wet spell over our 20-year period and call it their 

respective probability of occurrence.  

Crop Insurance --- The crop insurance data come from the Summary of 

Business (SOB) of USDA’s Risk Management Agency (RMA). SOB includes 

county-level information of crop insurance practices over 1980-2015. The raw data 

contains the total number of farmers that contract a policy, the premium they pay, 

how many of them report a loss and receive indemnity payments. This paper uses 

the loss ratio data reported in SOB to identify the counties heavily affected by the 

crop insurance policy.  We aggregate the raw data by agricultural activity types, 

insurance plan and coverage category to a county average.  
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 Socioeconomic Characteristics --- The data capturing human intervention 

come from several sources. Population density is from the U.S. Census Bureau 

while personal income per capita comes from the U.S. Bureau of Economic 

Analysis. These two variables serve as proxies for the level of demand of 

agricultural goods and of urban development upon farmland. They are widely used 

in the Ricardian literature. We also capture the heterogeneity present across local 

production processes and land use patterns by complementing our set of regressors 

with fertilizer expenditure per acre, the ratio of irrigated farmland to total farmland, 

a county’s share of cropland, the share of corn and soybean in farmland. All data 

come from USDA’s censuses. All our monetary variables are converted to 2012 

dollar using the PPI index for farm products from the U.S. Bureau of Labor 

Statistics. The only exception is personal income for which we use the GDP deflator 

from the U.S. Bureau of Economic Analysis. 

Soil Quality --- We control for spatial differences in soil quality and 

topographic characteristics by relying on USDA’s General Soil Map 

(STATASGO2) National Resource Inventory. These data capture the flood 

frequency ratio, erosion factor, slope steepness, wetland ratio, electrical 

conductivity ratio, available water capacity ratio, clay content, sand content, 

longitude, latitude and elevation.  

3.2    Criteria to identify the net recipients 

We use the 20-year average of the ratio between indemnity payment and the total 

premium. In the theoretical model, we defined the actuarially-fair participants of 

crop insurance as the farmers for whom the expected indemnity payment is equal 

to the annual premium. It means that their long-run average loss ratio is equal to 

one while it is greater than one for the net recipients.  
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According to the law of large numbers, the mean of a random sample 

converges to its expectation. Therefore, we identify the members of the two groups 

above based on where each county stands with regards to the 20-year average loss 

ratio. Figure 2 Panel (a) is the histogram with the kernel density plot of the 20-year 

average loss ratio. It shows that the mean is around one (0.971), which means the 

majority of the counties can be categorized as actuarially-fair. The right tail of the 

distribution, on the other hand, depicts the counties for whom the 20-year average 

loss ratio is above one. Among those, we isolate the counties with a loss ratio above 

90% of the distribution and call them the net recipients. This selection process is 

based on the intensity of the crop insurance programs.   

One potential pitfall of this approach is that a county might be mistakenly 

identified as a net recipient merely because it received a large amount of indemnity 

payment over one or a small number of years. We want to exclude these counties 

from the net recipient group since, according to the theory, the net recipients should 

have a larger-than-one loss ratio on a regular basis. Hence, we complement the 

previous approach with a selection based on the frequency of experiencing a loss 

ratio greater than one over the 20-year period of interest. Figure 2 Panel (b) is the 

histogram with the kernel density plot of this frequency. Like for the intensity 

criteria, we set the one-sided 10% rejection rule to detect the outliers who have 

frequently received indemnity payments above the total premium.3 

3.3    Summary statistics  

Before setting up the regression model, we compare in Table 1 the summary 

statistics of the two groups. Results indicate that the sample mean of farmland value 

is almost the same across groups at around $ 3,000 per acre. The groups experience 

also very similar climate normals. The differences in the four season temperature 

                                                           
3 For robustness checks, we moved the intensity and frequency criteria from its default 10% threshold to the 5% and 15% 

thresholds. Our main regression results remained unchanged. Complete results available from the authors upon request. 
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and precipitation are less than 7%, except for the winter temperature which is 13% 

warmer in the net recipient group. Comparing the probability of extreme events 

reveals a surprising result also. The net recipient counties do not experience a 

higher probability of extreme weather events as the common wisdom would suggest. 

In fact, they have a lower probability of being hit by both droughts and wet spells. 

We also find that the two groups diverge in terms of production characteristics. In 

the net recipient group, the farmers spend on average 60% less on fertilizer, and 

they also have 20% less land under irrigation. This last observation suggests that 

crop insurance may discourage farmers from undertaking appropriate adaptation 

activities. Indeed, previous studies on agricultural adaptation to climate change 

(Howden et al., 2007; Antel and Capalbo, 2010; Hertel and Lobell, 2014) suggest 

that an increasing use of fertilizer and of irrigation are two common adaptation 

strategies to a warmer climate that farmers can start by themselves.   

[Insert table 1 here] 

3.4    Model specification choices  

Our model builds on standard Ricardian regression models and can be formulated 

as follows:  

(9) 
𝐲𝐢𝐣𝐭 = T̅𝐢𝐣

′δ1 + T̅𝐢𝐣
𝟐′δ2 +  (T̅𝐢𝐣

′ × 𝐍𝐑𝐢𝐣)γ1 + (T̅𝐢𝐣
𝟐′ × 𝐍𝐑𝐢𝐣)γ2  

         +X𝐢𝐣𝐭β + Z𝐢𝐣α + 𝛈𝐣 + 𝛌𝐭 + 𝛏𝐣𝐭 + 𝛜𝐢𝐣𝐭          𝛜𝐢𝐣𝐭~𝐍(𝟎, 𝛔𝛜
𝟐) 

Where subscript i is the county index, j is the state index and t represents time. 

T stands for the matrix of variables describing climate normal.  We also add the 

square terms of temperature and precipitation, represented by T2, to capture their 

nonlinear effect.  X is a matrix of time-variant socioeconomic controls while Z 

captures all the time-invariant soil quality variables.  
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Our model introduces a structural change through the binary variable NR. It 

is a dummy variable that identifies the net recipient counties. The coefficients (𝛄) 

associated to the interaction between NR and the climate variables T captures the 

difference in the marginal effects of these variables on farmland value between the 

actuarially fair counties and the net recipient counties. Significant 𝛄 s would 

indicate that farmland values of the two groups respond to local climate conditions 

differently. Furthermore, we can compare the sign of the marginal effects 𝛅 with 

that of 𝛄. If they are different, then the net recipient counties are less sensitive to 

changes in climate conditions than the actuarially fair counties, which supports our 

hypothesis that crop insurance programs dampen adaptation to climate change. Last 

but not least, ηj are state fixed effects, λt are year fixed effects and ξjt are year-by-

state fixed effects. Since Schlenker et al. (2006) and Deschênes and Greenstone 

(2007), adding spatial and temporal fixed effects has become a standard practice 

aiming at controlling for the unobservable factors that might confound the marginal 

effect of climate. While the year fixed effects picks up the time trend, such as 

changes in commodity prices, technological innovations and policy shocks that are 

common to the entire country, state fixed effects do the same but for each individual 

state. Finally, year-by-state fixed effects capture time trends that are common to the 

counties of the same state and which might be generated by local business cycles 

and local policy shocks.  

Finally, previous Ricardian contributions, namely Schlenker et al. (2006), 

Deschênes and Greenstone (2007), Dall’erba and Dominguez (2015), have 

highlighted that the error term of Eq. (7) might suffer from heteroscedasticity, serial 

autocorrelation and/or spatial dependence given the irregularities in the size and 

shape of the counties and given the similarities in soil, climate and socio-economic 

conditions across nearby places. We employ two commonly used techniques to 

remedy this issue: (1) clustering the error terms at the county level as suggested by 
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Deschênes and Greenstone (2007); and (2) using the spatial panel data HAC 

estimator of Conley (2008).  

4   Results  

4.1   The baseline regression results 

We use Eq. (9) as the main model specification of this paper and its estimation 

results are reported in Table 2. All the variables listed in Section 3.1 and the fixed 

effects described in Section 3.4 are included as regressors. We suppress the 

estimates of soil quality controls, socioeconomic conditions, squared terms of 

climate variables and fixed effects for clarity purposes4.  

[Insert table 2 here] 

The first three columns of Table 2 report the regression results of Eq. (9) when 

the net recipient counties are selected based on the intensity criterion. Column (1) 

reports the marginal effects of the climate variables in the actuarially-fair group, i.e. 

𝛅 in Eq. (9). Column (2) displays the coefficient estimates of the difference between 

the marginal effects of the actuarially-fair and the net recipient groups, i.e. 𝛄. 

Column (3) reports the marginal effects in the net recipient group, i.e. 𝛅 + 𝛄. The 

standard errors in that column are computed by the delta method.  

Our theoretical framework suggests the followings: (i) 𝛄  should be 

statistically significant. (ii) 𝛄  and 𝛅  should have opposite signs; hence 𝛅 + 𝛄 

converges to zero and, in some cases, becomes not significantly different from zero. 

Panel A presents the results for the seasonal average temperature. To a large extent, 

they confirm our expectations. First, we find that the climate variables affect 

farmland value differently across the two groups. Second, the estimates in Column 

(2) cancel out the significant coefficients found in Column (1) so that the marginal 

                                                           
4 Complete results available from the authors upon request. 
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effect of temperature in the net recipient counties is not significant, except for 

summer. Even for the latter, the reduction in the magnitude of the marginal effect 

is large at nearly 45%.  

Panel B presents the results for precipitation. As in Panel A, we find a 

structural difference between the two groups. Comparing the results in columns (1) 

and (3), we find that during the growing seasons rainfall follows a pattern similar 

to temperature in that the marginal effect in the net recipient group is attenuated 

towards zero as it is in the opposite direction compared to the actuarially fair group. 

We also find that winter and autumn rainfall has a significant role in the net 

recipient group only. The importance of precipitation, to a large extent, depends on 

the existing irrigation infrastructures as Schlenker et al. (2005) pointed out. The 

irrigation system enables farmers to reallocate water resources over space and time. 

Therefore, the better irrigation system a region has, the less its agriculture relies on 

unpredictable local precipitation. The significantly positive impacts of winter and 

fall precipitation in the net recipient counties can also be interpreted as an evidence 

that these counties have a less developed irrigation infrastructure, as shown in table 

1. It might also be caused by the fact that crop insurance precludes its net recipients 

from investing in irrigation system construction.  

Panel C of the table reports the results associated with extreme weather events. 

As expected, column (1) shows the negative impacts of an increase in the 

probability of both drought and wet spell in the actuarially-fair group, although only 

the former is statistically significant. Neither of the two extreme weather events 

affects the net recipient group significantly, which confirms the predictions of our 

theoretical model.  

Finally, columns (4) to (6) present the regression results when the frequency 

criteria is used to identify the net recipient counties. The main results are similar to 

those based on the intensity criteria. Indeed, we find again that the marginal effect 
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of the climate variables in the net recipients is either attenuated and/or lose 

statistical significance compared to the actuarially-fair group. For instance, both 

spring temperature and rainfall have a positive impact in the actuarially-fair group, 

a result that is consistent with the knowledge of crop development. However, both 

of these positive impacts disappear in the net recipient group. Another evidence is 

the negative role of the probability of a drought that becomes non-significant in the 

net recipient group. 

4.2   Structural difference between rainfed and irrigated counties 

Previous Ricardian studies, namely Mendelsohn and Dinar (2003), Schlenker et al. 

(2005), Deschênes and Greenstone (2007) highlighted the structural difference 

between rainfed and irrigated counties in terms of the marginal effects of climate 

variables on land value. We include this form of heterogeneity in our Ricardian 

model in this subsection and check if this structural difference alters our main 

conclusions. A dummy variable (IR) is constructed to identify the irrigated status 

of the counties based on the ratio of the irrigated farmland to total farmland in 1997. 

Irrigated counties are countries with an irrigated ratio above 30%5. Interacting the 

irrigation dummy with climate covariates extends Eq. (9) as follows: 

(10) 

yijt = 𝐓̅ij
′𝛅𝟏 + 𝐓̅ij

2′𝛅𝟐 +  (𝐓̅ij
′ × NRij)𝛄𝟏 + (𝐓̅ij

2′ × NRij)𝛄𝟐 

+ (𝐓̅ij
′ × IRij)𝛇𝟏 + (𝐓̅ij

2′ × IRij)𝛇𝟐 

+(𝐓̅ij
′ × IRij × NRij)𝛕𝟏 + (𝐓̅ij

2′ × IRij × NRij)𝛕𝟐 

                       +𝐗ijt + 𝐙ij𝛂 + ηj + λt + ξjt + ϵijt          ϵijt~N(0, σϵ
2) 

The irrigation status dummy (IR) along with the net recipient dummy (NR) 

partition the sample into four subgroups: (1) rainfed actuarially-fair counties (i.e. 

                                                           
5 We choose 30% as the cutoff because it corresponds roughly to the 90% quantile of the distribution of the irrigated ratio in 

1997. Several different cutoffs have been chosen by previous researchers, such as 20% by Schlenker et al. (2005), 10% by 
Deschênes and Greenstone (2007), so we use them as robustness checks. Our main results remain unchanged.  
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IR = 0 and NR = 0); (2) rainfed net recipient counties (i.e. IR = 0 and NR = 1); (3) 

irrigated actuarially-fair counties (i.e. IR = 1 and NR = 0); and (4) irrigated net 

recipient counties (i.e. IR = 1 and NR = 1).  

Table 3 reports the regression results of Eq. (10). For the purpose of clarity, 

we choose to directly report the marginal effects of the climate variables. For the 

other subgroups except the reference one, the standard error of the estimates of 

marginal effect is calculated based on the delta method. 

[Insert table 3 here] 

To a large extent, the comparison between actuarially-fair and net recipient 

counties in both rainfed and irrigated groups confirms the baseline results. We first 

focus on the columns (1) and (2) that illustrate the comparison in the rainfed group. 

For almost every seasons, the marginal effects of seasonal temperature in the net 

recipient countries decrease in magnitude and statistical significance, which is 

consistent with our baseline results. Our findings for seasonal rainfall and extreme 

weather events are also similar to the baseline results. Columns (3) and (4) display 

the results for the irrigated group. Again, we find that the net recipient counties are 

more likely to display smaller and insignificant marginal effects of the climate 

variables, a pattern both predicted by our conceptual model and verified by the 

baseline regression results.  

5   Conclusion   

This paper challenges the climate change adaptation assumption embedded in the 

Ricardian framework by demonstrating that federal crop insurance programs 

significantly reduce or even cancel the farmers’ willingness to adapt. We start by 

extending the traditional Ricardian setting to reflect that profit-maximizing farmers 

take their production decisions based on the certainty that paying an insurance 

premium guarantees they will receive support benefits in the case of a bad harvest. 
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Results indicate that a net recipient of crop insurance programs has little to no 

incentive to adapt to new local climate conditions. The model is then tested 

empirically and confirms our expectations. Based on a panel dataset covering all 

the continental U.S. counties and the four most recent censuses of USDA, we find 

that compared to their counterparts in the actuarially-fair group, farmland values in 

the net recipient group are less sensitive to changes in climate conditions.  

The climate adaptation reduction effect induced by crop insurance programs 

might cause considerable social welfare loss in the long run. Under the current crop 

insurance system, all participants receive some federal support to finance a part of 

their annual premium payment. In addition, the government subsidizes the net 

recipients through indemnity payments that have been the focus of this manuscript. 

Ultimately, if the policy makers aim at minimizing the potential damage of climate 

change on the U.S. agriculture, crop insurance programs should only function as a 

social safety net in the short run. In the long run, a more efficient policy would 

consist in helping the vulnerable farmers adopt new technologies, consider other 

crops and absorb more often the costs associated to bad planting decisions 

(Kandlikar and Risbey, 2000; Smit and Skinner, 2002; Mendelsohn, 2006; Howden 

et al., 2007; Zilberman et al., 2012; Hertel and Lobell, 2014).  

  



24 

 

References  

Antle, John M., and Susan M. Capalbo. 2010.  "Adaptation of agricultural and food 

systems to climate change: an economic and policy perspective." Applied 

Economic Perspectives and Policy 32, no. 3: 386-416. 

Annan, Francis, and Wolfram Schlenker. 2015. "Federal crop insurance and the 

disincentive to adapt to extreme heat." The American Economic Review - Papers 

and Proceedings 105, no. 5: 262-266.  

Auffhammer, Maximilian, Solomon M. Hsiang, Wolfram Schlenker, and Adam 

Sobel. 2013. "Using weather data and climate model output in economic analyses 

of climate change." Review of Environmental Economics and Policy 7, no. 2: 181-

198. 

Burke, Marshall, and Kyle Emerick. 2016. "Adaptation to climate change: 

Evidence from US agriculture." The American Economic Journal: Economic 

Policy 8, no. 3: 106-140. 

Coble, Keith H., and Thomas O. Knight. 2002. "Crop insurance as a tool for price 

and yield risk management." In A Comprehensive Assessment of the Role of Risk 

in US Agriculture, pp. 445-468. Springer US. 

Conley, Timothy G. 2008. "Spatial Econometrics", in Steven N. Durlauf and 

Lawrence E.Blume (eds.), The New Palgrave Dictionary of Economics, Vol. 7, 

Second Edition, pp. 741-747. Houndsmills: Palgrave Macmillan. 

Dall'erba, Sandy, and Francina Domínguez. 2016. "The Impact of Climate Change 

on Agriculture in the Southwestern United States: The Ricardian Approach 

Revisited." Spatial Economic Analysis 11, no. 1: 46-66.  



25 

 

Deschenes, Olivier, and Michael Greenstone. 2007. "The economic impacts of 

climate change: evidence from agricultural output and random fluctuations in 

weather." The American Economic Review 97, no. 1: 354-385. 

Environmental Working Group. “USDA Subsidies for farms in The United States 

totaled $322.7 billion in subsidies from 1995 through 2014”, Accessed on April. 

16th 2017. https://farm.ewg.org/regionsummary.php?fips=00000&regionname= 

theUnitedStates. 

Goodwin, Barry K., and Vincent H. Smith. 1995. The economics of crop insurance 

and disaster aid. American Enterprise Institute.  

Hertel, Thomas W., and David B. Lobell. 2014. "Agricultural adaptation to climate 

change in rich and poor countries: Current modeling practice and potential for 

empirical contributions." Energy Economics 46: 562-575. 

Howden, S. Mark, Jean-François Soussana, Francesco N. Tubiello, Netra Chhetri, 

Michael Dunlop, and Holger Meinke. 2007. "Adapting agriculture to climate 

change." Proceedings of the national academy of sciences 104, no. 50: 19691-

19696. 

IPCC. 2014. Climate Change 2014: Synthesis Report. Contribution of Working 

Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel 

on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. 

IPCC, Geneva, Switzerland.  

Kandlikar, Milind, and James Risbey. 2000. "Agricultural impacts of climate 

change: if adaptation is the answer, what is the question?" Climatic change 45, 

no. 3-4: 529-539. 

Knight, Thomas O., and Keith H. Coble. 1997. "Survey of US multiple peril crop 

insurance literature since 1980." Review of Agricultural Economics: 128-156. 

https://farm.ewg.org/regionsummary.php?fips=00000&regionname


26 

 

Massetti, Emanuele, and Robert Mendelsohn. 2011. "Estimating Ricardian models 

with panel data." Climate Change Economics 2, no. 4: 301-319.  

Mendelsohn, Robert, and Ariel Dinar. 2003. "Climate, water, and 

agriculture." Land economics 79, no. 3: 328-341.  

Mendelsohn, Robert, William D. Nordhaus, and Daigee Shaw. 1994. "The impact 

of global warming on agriculture: a Ricardian analysis." The American economic 

review 84, no. 4: 753-771.  

Mesinger, Fedor, Geoff DiMego, Eugenia Kalnay, Kenneth Mitchell, Perry C. 

Shafran, Wesley Ebisuzaki, Dušan Jović et al. 2006. "North American regional 

reanalysis." Bulletin of the American Meteorological Society 87, no. 3: 343-360. 

Miao, Ruiqing, Madhu Khanna, and Haixiao Huang. 2015. "Responsiveness of 

crop yield and acreage to prices and climate." American Journal of Agricultural 

Economics 98, no. 1: 191-211. 

Plantinga, Andrew J., Ruben N. Lubowski, and Robert N. Stavins. 2002. "The 

effects of potential land development on agricultural land prices." Journal of 

Urban Economics 52, no. 3: 561-581.  

Polsky, Colin. 2004. "Putting space and time in Ricardian climate change impact 

studies: Agriculture in the US Great Plains, 1969–1992." Annals of the 

Association of American Geographers 94, no. 3: 549-564.  

Rosen, Sherwin. 1974. "Hedonic prices and implicit markets: product 

differentiation in pure competition." Journal of political economy 82, no. 1: 34-

55. 



27 

 

Schlenker, Wolfram, W. Michael Hanemann, and Anthony C. Fisher. 2005. "Will 

US agriculture really benefit from global warming? Accounting for irrigation in 

the hedonic approach." The American Economic Review 95, no. 1: 395-406.  

Schlenker, Wolfram, W. Michael Hanemann, and Anthony C. Fisher. 2006. "The 

impact of global warming on US agriculture: an econometric analysis of optimal 

growing conditions." Review of Economics and statistics 88, no. 1: 113-125. 

Schlenker, Wolfram, and Michael J. Roberts. 2009. "Nonlinear temperature effects 

indicate severe damages to US crop yields under climate change." Proceedings 

of the National Academy of sciences 106, no. 37: 15594-15598. 

Shields, Dennis A. 2013. "Federal crop insurance: Background." Washington DC: 

US Congressional Research Service Report 40532. 

Smit, Barry, and Mark W. Skinner. 2002. "Adaptation options in agriculture to 

climate change: a typology." Mitigation and adaptation strategies for global 

change 7, no. 1: 85-114. 

Zilberman, David, Jinhua Zhao, and Amir Heiman. 2012. "Adoption versus 

adaptation, with emphasis on climate change." Annual Review of Resource 

Economics 4, no. 1: 27-53. 

Zulauf, Carl. 2016. "Crop Insurance Premium Subsidy Rates: A Proposed 

Objective Metric Based on Systemic Risk." farmdoc daily (6):86, Department of 

Agricultural and Consumer Economics, University of Illinois at Urbana-

Champaign, May 5, 2016. 

  



28 

 

 

Panel (a)   Standard Ricardian Approach Plot  

 

Panel (b)   Ricardian Plot with Protected Revenue 

 

Panel (c)    Regression using Truncated Data 

Figure 1:  An Illustrative Example for the Theoretical Framework 
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Panel (a)   Histogram and Kernel Density Plot for Intensity Criteria  

 

Panel (b)   Histogram and Kernel Density Plot for Frequency Criteria  

Figure 2:  Intensity and Frequency Criteria for Identifying Net Recipients  
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Table 1.  Summary Statistics over Two Groups  

 Actuarially-fair Net recipient Difference 

 Mean Stand. dev. Mean Stand. dev. Level Percentage 

Loss ratio (ratio) 0.824 0.345 2.084 0.811 1.260 152.9% 

Land value ($/acre) 3212.462 2215.159 3206.125 2497.183 -6.337 -0.2% 

Winter temp. (ºC) 4.504 5.277 5.128 5.910 0.625 13.8% 

Spring temp. (ºC) 15.527 4.250 15.402 5.340 -0.125 -0.8% 

Summer temp. (ºC) 26.993 3.672 26.354 4.755 -0.639 -2.3% 

Autumn temp. (ºC) 16.355 3.957 16.291 5.010 -0.064 -0.3% 

Winter prec. (mm/day) 2.385 1.268 2.545 1.495 0.160 6.7% 

Spring prec. (mm/day) 2.889 0.935 2.874 1.052 -0.014 -0.5% 

Summer prec. (mm/day) 2.830 1.021 2.640 1.036 -0.191 -6.7% 

Autumn prec. (mm/day) 2.367 0.784 2.476 0.944 0.110 4.6% 

Drought prob. (100%) 0.100 0.099 0.097 0.103 -0.004 -3.6% 

Wet spell prob. (100%) 0.062 0.068 0.048 0.042 -0.014 -22.9% 

Fertilizer expend. ($/acre) 31.804 29.657 12.547 23.700 -19.257 -60.6% 

Irrigated ratio (100%) 0.209 0.257 0.166 0.256 -0.043 -20.4% 

Num. of counties 2531 282 - - 

 

Note: All dollar figures are in 2012 constant dollars. This table reports the summary statistics for the variables of interest 

over the actuarially-fair and net recipient groups. Counties are assigned into these two groups based on 20-year (1993-

2012) average loss ratio.  
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Table 2:  The Baseline Regression Table  

 Intensity Criteria  Frequency Criteria 

 (1) (2) (3)  (4) (5) (6) 

 
climate 

variable 

climate 

variable 

× net recipient 

dummy 

(1) + (2) 

 

climate 

variable 

climate 

variable 

× net recipient 

dummy 

(4) + (5) 

Panel A: Seasonal Average Temperature 

winter -0.065*** 0.123*** 0.057  -0.069*** 0.111*** 0.042 

 (0.011) (0.032) (0.031)  (0.011) (0.030) (0.029) 

spring 0.221*** -0.211** 0.009  0.227*** -0.142** 0.085 

 (0.029) (0.096) (0.097)  (0.033) (0.072) (0.071) 

summer -0.346*** 0.156*** -0.189***  -0.363*** 0.0754 -0.288*** 

 (0.050) (0.050) (0 .062)  (0.049) (0.049) (0.065) 

autumn 0.008 -0.206 -0.197  0.026 -0.125 -0.099 

 (0.046) (0.129) (0.128)  (0.050) (0.136) (0.133) 

Panel B: Seasonal Total Rainfall 

winter 0.034 0.182** 0.216**  0.047 0.004 0.050 

 (0.043) (0.079) (0.080)  (0.043) (0.065) (0.068) 

spring 0.424*** -1.175*** -0.750***  0.423*** -0.585*** -0.162 

 (0.080) (0.206) (0.205)  (0.084) (0.212) (0.205) 

summer -0.536*** 0.588*** 0.051  -0.540*** 0.497*** -0.043 

 (0.079) (0.133) (0.145)  (0.081) (0.125) (0.136) 

autumn 0.028 0.660*** 0.687***  -0.005 0.551*** 0.546*** 

 (0.097) (0.182) (0.169)  (0.101) (0.181) (0.166) 

Panel C: Extreme Weather Events 

drought -0.231*** 0.282  0.050  -0.211** 0.0277 -0.183 

 (0.0873) (0.320) (0.310)  (0.090) (0.307) (0.295) 

wet spell -0.00216 -0.525 -0.527  -0.00170 0.262 0.260 

 (0.0865) (0.557) (0.548)  (0.089) (0.469) (0.461) 
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Standard errors in parentheses, * p < 0.10, ** p < 0.05, *** p < 0.01.  

Note: This table presents the predicted marginal effects of the climate variables on farmland value using the regression 

estimates from Equation (9). “Intensity Criteria” means the net-recipient dummy is selected based on long-run average loss 

ratio. “Frequency Criteria” means the net-recipient dummy is selected based on long-run loss history. The dependent variable 

is the log of farmland value per acre. The independent variables of interest are seasonal temperature and precipitation, drought 

and wet spell probabilities. The squared terms of temperature and precipitation are added to capture nonlinear effects. The 

share of irrigation, fertilizer expenditure, per capital income, and population density are used as socioeconomic controls. 

Flood frequency ratio, erosion factor, slope steepness, wetland ratio, electrical conductivity ratio, available water capacity 

ratio, clay content, sand content, longitude, latitude and elevation are included as soil quality controls. The state, year, state-

by-year fixed effects are also included in order to control unobservable factors. The coefficients of these controls are 

suppressed for the purpose of clarity. The full set of regression results is available upon request. The standard errors are 

heteroscedasticity and spatial autocorrelation consistent à la Conley (2008). 

  



33 

 

 

Table 3:  The Marginal Effects of Climate Variables for four Subgroups 

 Rainfed Group Irrigated Group 

 (1) (2)     (3) (4) 

 
Actuarially-

fair 
Net Recipient 

Actuarially-

fair 
Net Recipient 

Panel A: Seasonal Average Temperature 

winter -0.057*** 0.011 -0.107*** 0.034 

 (0.012) (0.040) (0.016) (0.044) 

spring  0.189*** -0.046 0.331*** 0.063 

 (0.030) (0.092) (0.063) (0.094) 

summer -0.358*** -0.236*** -0.285*** -0.124 

 (0.050) (0.073) (0.055) (0.075) 

autumn 0.046 0.002 -0.189** -0.274** 

 (0.056) (0.137) (0.077) (0.124) 

Panel B: Seasonal Total Rainfall 

winter 0.068* 0.231*** 0.032 0.289 

 (0.041) (0.073) (0.055) (0.135) 

spring  0.804*** 0.101 0.099 -1.110*** 

 (0.082) (0.252) (0.123) (0.301) 

summer -0.381*** -0.020 -0.743*** -0.031 

 (0.087) (0.172) (0.102) (0.184) 

autumn -0.104 0.182 0.405*** 0.841*** 

 (0.095) (0.187) (0.169) (0.264) 

Panel C: Extreme Weather Events 

drought -0.239*** -0.431 -0.423** -0.029 

 (0.089) (0.368) (0.173) (0.432) 

wet spell 0.004 -0.009 -0.037 -0.644 

 (0.093) (0.457) (0.160) (0.749) 

Standard errors in parentheses, * p < 0.10, ** p < 0.05, *** p < 0.01. Note: This table reports the predicted marginal effects 

of the climate variables on farmland value using the regression estimates from Equation (10). Each column represents a 

subgroup discussed in section 4.2. For detailed information on the model specification, please refer to the note at the bottom 

of Table 2.  


