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Abstract: This paper estimates a Ricardian model of farmland value across the counties of the 

semiarid Southwestern United States. Compared to previous contributions, we focus on one 

climate zone and include the presence of extreme weather events and of farm subsidies in our 

analysis. We also control for heterogeneity and for various types of spillover effects. Once 

calibrated, the model is used to project changes due to future climate conditions. We find that the 

probability of a loss is great in highland counties while gains and losses are relatively equally 

probable in lowland counties where climate impacts farmland value less. 
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1. Introduction 

A recent report by Garfin et al. (2013) highlights how the Southwestern U.S. is likely to be 

challenged by future climate conditions. In addition to being the hottest (based on July maximum 

temperatures) and driest region of the country, the Southwest is warming and is experiencing 

more drought than in the past century and a reduction in streamflows from its four major 

drainage basins. The projected climate conditions compiled in this report offer a future with 

more frequent heat waves in summer, decreasing precipitation, more frequent precipitation 

extremes in winter, a decline in river flows and soil moisture and more severe extremes 

(droughts and/or floods) in parts of the Southwest. 

Among the different sectors of the southwestern economy that could be affected by new 

climate conditions, agriculture is one of the most obvious due to the high sensitivity of its output 

to temperature and precipitation. Yet, in spite of its current climate, the Southwest is an area that 

displays an astonishing amount of agricultural activity. Farmland represents 35% of Arizona’s 

territory, 47% of Colorado’s, 20% of Utahs’ and 55% of New Mexico’s. In addition to cattle and 

dairy activities which are present in the four states, the top crops represent a wide range of 

products going from lettuce, cotton, alfalfa, hay (AZ), barley, wheat, beans, potatoes, onions, 

corn, tomatoes (UT), proso millet, potatoes, onions, sunflower, fruits (CO), chile, corn, wheat, 

onions, peanuts, hay, cotton, beans (NM). Grazing is also very lucrative in UT.  

All these activities are supported by a well-developed irrigation system that imposes huge 

water demands on the ecological system of the Southwest. Large-scale water projects, such as 

dams, reservoirs, canals, pumping stations and the Central Arizona Project, help to fulfill some 

of this demand through water storage and transfer. However, irrigated water availability is still 

sensitive to weather conditions and their changes at the source; and projections reported in 
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Garfin et al. (2013) indicate a reduction in late winter-spring mountain snowpack. As a result, 

agriculture in Arizona relies heavily on the Colorado River, consumes 80% of the water used in 

the state and is highly sensitive to future climate conditions in the Colorado Rockies (U.S. 

Bureau of Reclamation, 2007). 

Measuring the impact of future climate conditions on agriculture has attracted a lot of 

attention among academic scholars over the last two decades. In the U.S., it is anticipated that 

some regions will be winners and others losers, but it is still unclear whether climate change will 

bring a net gain or a net loss for the US agriculture as a whole (Mendelsohn et al., 1994; 

Deschênes and Greenstone, 2007), as production currently spans a variety of climate zones over 

all the lower 48 states and occupies up to 42% of US territory. In addition, the results are 

sensitive to whether adaptation is part of the conceptual framework used for the analysis. Crop 

growth simulation models and econometric models focusing on one type of crop only rely on the 

assumption that farmers do not adapt their choice of inputs and crops to changing climate 

conditions. On the other hand, the Ricardian approach initiated by the work of Mendelsohn et al. 

(1994) relies on the assumption that landowners adapt to changing local weather conditions and 

allocate their land to the most rewarding use. In spite of its criticisms (e.g. Kelly et al., 2005), 

this framework has attracted much attention when analyzing the U.S. agricultural sector 

(Schlenker et al., 2005, 2006; Deschênes and Greenstone, 2007, Polsky, 2004) in large part 

because empirical evidence clearly demonstrates that adaptation at the farm level is already 

taking place in the U.S. (Reilly and Schimmelpfennig, 1996) and in its Southwest. 

While we also adopt a Ricardian framework in this paper, our work departs from previous 

contributions on a number of important points. First, we limit our analysis to the counties of the 

Southwestern United States (Colorado, New Mexico, Arizona, Nevada) because they belong to 
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the same climate zone. Previous contributions have overlooked the fact that the role of climate 

conditions on agriculture is expected to vary across climate zones, which raises concerns on the 

accuracy of coefficient estimates measured on the entire sample of U.S. counties. Even in a 

limited sample like ours, the large variety of the Southwest’s landscapes - mountains, valleys, 

plateaus, canyons, and plains – and associated elevation (Pinal, AZ, is 713 meters above sea 

level while Hinsdale, CO, is 3311 meters high) leads to diverse climates, a form of spatial 

heterogeneity that we will define based on altitude. 

Secondly, we include extreme events (heat and cold waves as well as heavy precipitation) 

because several global and regional climate models suggest that they will occur more often in the 

future (Tebaldi et al., 2006, Dominguez et al. 2012). Unlike work using global climate models 

(GCMs) data or statistically downscaled GCMs, we use dynamically downscaled data that allow 

us to explicitly account for changes in the intensity and frequency of extreme events at the local 

scale (a spatial resolution of 35-50km while GCMs used in Schlenker et al. (2006) have a spatial 

resolution of about 200-300km). This level of detail is applied to future climate projections, 

which in our case come from seven regional climate model (RCM) simulations. Such a variety of 

projections allow us to account for model uncertainty for future climate projections and will 

allow us to provide an envelope of likely future farmland values. This approach improves upon 

the usual projections based on a single climate model. 

Third, we pay special attention to the role of government-funded projects on agriculture. 

Polsky (2004) and Massetti and Mendelsohn (2011) have explored this issue but used only one 

type of support. Here, we rely on a unique database from the Census Bureau that allows us to 

consider up to 7 types of federally-funded farm programs. While previous contributions have 

found agricultural subsidies to increase the value of the land (e.g. Goodwin et al., 2003; Roberts 
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et al., 2003), the work of Lewandrowski and Brazee (1993) and Barnard et al. (1997) indicates 

that the government’s creation of economic disincentives through subsidies could counterbalance 

the process of farmers’ adaptation to climate change. In addition, because increasing climate 

variability could result in an increasing occurrence of very good or very bad harvests, 

government programs could slow down farmers’ consideration of crop failures (Reilly and 

Schimmelpfennig, 1996).  

Finally, while it is largely accepted that counties that are located nearby tend to share similar 

climatic conditions, soil characteristics and irrigation practices, spatial autocorrelation has often 

been treated as a second-order issue in Ricardian studies. The phenomenon has either been 

ignored (Mendelsohn et al., 1994), treated with Conley’s (1999) non-parametric approach (as in 

Deschênes and Greenstone, 2007; Le, 2009; Schlenker and Roberts, 2009) or in the frame of a 

model with spatially autocorrelated omitted variables (as in Schlenker et al., 2005, 2006). All of 

these methods fail to model explicit, empirically verified, spillover effects. They come from the 

knowledge spillovers farmers experience when in contact with their peers (Rogers, 1995), which 

leads them to adopt similar farming practices (Polsky, 2004) and they may also come from 

public spending in agricultural R&D that spills over neighboring states (McCunn and Huffman, 

2000). They may also originate from the complex cycle of water (Dominguez et al., 2009). For 

instance, the irrigated water that is so crucial to Arizona’s and New Mexico’s agriculture actually 

originates hundreds of miles away in the Colorado Rockies. The reliable water reservoir it 

provides is principally due to winter precipitation in this area. Negative externalities happen too 

when, for instance, intense precipitation due to summer thunderstorms leads to floods, property 

damages and casualties across several nearby counties (Garfin et al., 2013).  

Accounting for spillovers allows us to deal with the omitted variable bias that plagues the 
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Ricardian literature. Deschênes and Greenstone (2007) have raised similar concerns about 

estimates’ bias although they list other factors than spatial externalities as the source of it. To our 

knowledge, only two spatial econometric contributions have measured spillovers in a Ricardian 

setting. They are Polsky (2004) and Seo (2008). This paper improves upon the spatial 

econometrics used in these contributions by, first, testing whether local (first-order only) or 

global spillovers fit our data better. Second, we report the direct and indirect effects à la LeSage 

and Pace (2009) so that the coefficient estimates can be readily interpreted as marginal effects.  

The structure of this paper is as follows: section 2 reviews the Ricardian framework and 

provides details about the way spatial autocorrelation has been dealt with so far and should be 

treated. Section 3 describes our sample, data and weight matrix while section 4 provides the 

estimation results. Section 5 builds on the estimated coefficients and seven combinations of 

RCM-GCMs to project climate conditions and future farmland values over the 2038-2070 

period. Finally, the conclusions are reported in section 6.  

 

2. The Ricardian setting, model specification and spatial autocorrelation 

The traditional Ricardian setting is that of a single farmer putting his land to its most 

profitable use given a set of conditions. In the absence of data at the individual farm level, a 

Ricardian model is estimated on a sample of geographical units and its reduced form is as 

follows: 

𝑦 = 𝛼𝜄𝑛 + 𝑋𝛽 + 𝜀   𝑤𝑖𝑡ℎ 𝜀~𝑁(0, 𝜎2𝐼𝑛)                                                                         (1) 

 

where the dependent variable, farmland value per acre, is a function of a matrix X which stands 

for a set of climate, land and human variables that will be described further in section 3.  
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One caveat of equation (1) is that it does not consider spatial autocorrelation. This phenomenon 

comes from a true interaction between places, such as when farmers exchange ideas about the 

production process (Polsky, 2004), or from a mismatch between the scale and spatial extent of 

the units of observations and the scale and spatial extent of the studied process (the ecological 

fallacy highlighted in Anselin and Cho, 2000). For instance, precipitation does not stop at the 

county boundaries and nearby counties share similar soil conditions (Ezcuerra et al., 2008). 

These elements explain why nearby counties tend to rely on similar production practices, 

including the use of irrigation and fertilizers. While this problem has been recognized in the 

Ricardian literature, it has not been properly treated. Some contributions disregard the 

phenomenon entirely (Mendelsohn et al., 1994), which is a problem as it is now well known that 

Ordinary Least Squares (OLS) estimates are biased and inconsistent and/or inefficient in the 

presence of spatial autocorrelation (Anselin, 1988). As such, later contributions such as 

Deschênes and Greenstone (2007), Le (2009) and Schlenker and Roberts (2009) decided to 

account for it, but they chose Conley’s (1999) non-parametric approach that provide consistent 

standard errors calculated on spatially autocorrelated error terms or they adopt a spatial error 

model where the errors are spatially autocorrelated (Schlenker et al., 2005, 2006; Lippert et al., 

2009) as follows: 𝜀 = 𝜆𝑊𝜀 + 𝑢  𝑎𝑛𝑑 𝑢~𝑁(0, 𝜎2𝐼𝑛) where W is the spatial weight matrix. 

Both approaches provide consistent estimates (OLS does not) but they are also biased when 

the true data generating process calls for actual spillover effects. Their parameter estimate equals 

the average marginal effect of the r
th

 variable on the dependent variable y as if there is no 

marginal effect of the cross-partial derivatives, i.e. no spillover effects (LeSage and Pace, 2009). 

Formally: 

𝜕𝑦𝑖/𝜕𝑥𝑟𝑖 = 𝛽𝑟                         (2) 
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𝜕𝑦𝑗/𝜕𝑥𝑟𝑖 = 0                         (3) 

 

This assumption is impossible to match with reality. Consider a simple example: if no 

precipitation were to take place in the Rocky Mountain region of the Colorado River Basin, there 

would be no snowpack, no Colorado river and no water for irrigation in Arizona. As such, 

agriculture in AZ is highly sensitive to climate changes in Colorado. Other spillovers due to 

precipitation include the floods due to the frequent summer thunderstorms in the Southwest. In 

addition, McCunn and Huffman (2000) show that public spending in agricultural R&D spills 

over neighboring states and Polsky (2004) demonstrates that interactions between neighboring 

farmers lead them to share similar production practices. We could also argue that the absence of 

spillovers implies all agricultural goods produced in location i serve the local demand only. Yet, 

empirical evidence proves this assumption is not sustainable. For instance, only 30% of AZ-

produced agricultural goods are consumed locally while the rest is sold to other US states (60%) 

or abroad (10%) according to IMPLAN (2010). Econometrically, the omission of spillover 

effects lead to an omitted variable bias that plagues the Ricardian literature as noted by 

Deschênes and Greenstone (2007). However, for them the source of the bias lies in the 

researcher’s incapacity to account for characteristics such as “soil quality and the option value to 

convert [land] to a new use” (p. 355) that are fully contained within the county of interest. In this 

paper, we put to the fore the bias due to the omission of externalities that influence the dependent 

variable. 

The most difficult question then becomes: “What is the appropriate spatial model 

specification?”. The first option, not implemented in any Ricardian study to our knowledge, 

would consist in adopting a spatial lag of the explanatory variables that are spatially dependent. 
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If we adopt the idea that only the climate conditions are spatially autocorrelated, such as model 

can be written as follows: 

𝑦 = 𝛼𝜄𝑛 + 𝑋1𝛽1 + 𝑋2𝛽2 + 𝑊𝑋2𝜃 + 𝑢   𝑤𝑖𝑡ℎ 𝑢 = 𝜆𝑊𝑢 + 𝜀  𝑎𝑛𝑑 𝜀~𝑁(0, 𝜎2𝐼𝑛)          (4) 

 

where 𝑋1 is a matrix of all conditioning variables but the weather variables, 𝑋2 captures the 

weather conditions and 𝑊𝑋2 measures them in the neighbors of each location. We add here the 

assumption that the errors may be spatially autocorrelated.  

Note that the spatial lag of the other regressors could also be considered. For instance, the work 

of McCunn and Huffman (2000) and Polsky (2004) suggest that production processes (e.g. use of 

irrigation or fertilizer) developed elsewhere can be adopted locally and influence the local 

farmland value. However, we believe that the neighbors’ soil characteristics should not appear as 

regressors as the spatial association they display is only due to a problem of ecological fallacy 

(Anselin and Cho, 2000) that is traditionally dealt with through spatial error autocorrelation 

(Anselin, 1988). 

The advantage of a model specified as (4) relatively to model (1) is that  

𝜕𝑦/𝜕𝑥𝑟 = (𝛽𝑟 + 𝑊𝜃𝑟)                        (5) 

where 𝛽 reflects the direct effects (as in 2) while 𝜃 captures local spillover effects, i.e. the role of 

the weather experienced in the immediate, first-order, neighboring observations only.  

However, model (5) does not consider higher-order effects and feedback effects, i.e. indirect 

effects. Traditionally the spatial hedonic literature pinpoints their origin in the set of 

“comparables” that have been sold in the past and are located in the same vicinity. They have 

been used to assess the value of a property in the frame of a spatial autoregressive model, also 

called spatial lag model or SAL (e.g. Can and Megbolugbe, 1997). At the spatial scale we use 

here, we believe that the farmland value is comparable across neighboring counties because they 
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generally display similar topographic, soil and climate characteristics as well as access to similar 

amenities (road or city, for instance). We can also argue that the cycle of water is so that 

evapotranspiration from region i can lead to rain in neighboring region j (first-order effect) 

which, in turn, will evaporate and fall in region k (higher-order effect) or even feedback to region 

i (Dominguez et al., 2009). Since our data are measured on a 5-year average, it could leave 

enough time for several cycles of rain-evapotranspiration to take place. Direct effects and all the 

successive rounds of evapotranspiration-rainfall can be modeled in the frame of a SAL specified 

as follows: 

𝑦 = 𝛼𝜄𝑛 + 𝑋𝛽 + 𝜌𝑊𝑦 + 𝜀   𝑤𝑖𝑡ℎ 𝜀~𝑁(0, 𝜎2𝐼𝑛)                                                  (6) 

where 𝜕𝑦/𝜕𝑥𝑟 = (𝐼𝑛 − 𝜌𝑊)−1𝐼𝑛𝛽𝑟 = (𝐼𝑛 + 𝜌𝑊 + 𝜌2𝑊2 + ⋯ + 𝜌𝑛𝑊𝑛)𝐼𝑛𝛽𝑟           (7) 

Such a model accounts for direct effects (𝐼𝑛) plus neighborhood effects (𝜌𝑊) and higher-order 

effects including feedback effects (𝜌2𝑊2 + ⋯ + 𝜌𝑛𝑊𝑛). They are called global spillovers. 

Theoretically, it means that all counties are linked with each other while empirical evidence 

indicates that higher-order effects tend to zero after a few rounds of spillovers as 𝜌 < 1 and the 

elements 𝑤𝑖𝑗 of W are also below 1 in a standardized weight matrix.  

 

3. Data and weight matrix 

Our analysis is applied to the counties of Arizona, New Mexico, Colorado and Utah. Among the 

138 counties that compose these four states, we remove five counties for which there is no or 

very little agricultural activity as defined by the absence of any employment in this sector over 

2001-2010
i
. We also omit all the urban counties because urbanization biases farmland value due 

to the option of developing land for further urban uses (Plantinga et al., 2002). Following 

Schlenker et al. (2006), we define urban counties as those where the density of population is 
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above 400 inhabitant per square mile
ii
. Finally, we also remove Yuma, AZ, because its net profits 

per acre are 52 times the average of the sample (it is the world’s winter lettuce capital), which 

leads to farmland values about 4 times the sample average. As a result, our sample is composed 

of 124 counties. 

Our dependent variable is the (log of) average value of land and buildings per acre. Data come 

from the 2007 census of USDA that has not yet been used in any Ricardian study. Our 

independent variables capture a set of climate conditions, land conditions and socio-economic 

characteristics. The North American Regional Reanalysis (NARR) (Mesinger et al., 2006) is 

used as the proxy for observations of past climate data as it assimilates observed precipitation 

and temperature. NARR data are available for the conterminous US and are at a 32-km spatial 

resolution, 3-hourly temporal resolution for the period 1979-present. Hence, we used a spatial 

interpolation method to calculate a county’s values
iii

. We prefer the NARR data over the well-

published PRISM data used in several other Ricardian studies because the latter is a monthly 

dataset that will not provide information on extreme events of which relevance to our dataset is 

described further below. Our climate variables capture the average value over 5 years prior to the 

dependent variable (2003-2007) as we hypothesize that 5 years is long enough to allow farmers 

to adapt to climate change while it is still short enough to have an influence on production in 

2007.  

Because of high levels of multicollinearity across seasons, we cannot use all the climate 

variables our dataset could provide. As such, we choose the summer temperatures because most 

crops (corn, cotton, sorghum, beans, potatoes, sunflower, alfalfa (in AZ and UT), barley and 

wheat (in UT and CO) grow during that season in the Southwest (USDA, 2010). We also choose 

the winter and summer precipitation knowing that, in the Southwest, most of the yearly amount 
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of precipitation takes place during these seasons. We do not use the squared term of the above 

variables as it would lead to perfect collinearity with their original values and we disregard the 

product of summer precipitation and temperature for similar reasons. On the other hand, we can 

use the maximum daily precipitation for each season. The latter variable captures, first, the 

seasonal changes in precipitation that are common in the Southwest. Indeed, a pronounced peak 

in precipitation in later summer due to the monsoon is observed in most of Arizona, western 

New Mexico, southern Utah and southwest Colorado. On the other hand, the high plains and 

plateaus of New Mexico and Colorado observe frequent storms in the spring and less wintertime 

precipitation. The second motivation behind precipitation extremes is that their frequency and 

intensity is expected to increase in the future (Trenberth, 1999). The Southwest is also a place 

that experiences frequent cold and heat waves that affect the agriculture of the region. Southwest 

Utah and the southern parts of Arizona and New Mexico are prone to hard freezes when the 

storm track plunges far to the south of its average position. At the same time, the Southwest is 

experiencing more regular episodes of extreme high temperatures than in the past. We calculate 

them based on Perkins and Alexander (2013) which consists, for each day, in defining a moving 

window of 15 days (7 before and 7 after) and counting the number events above the upper 90
th

 

percentile of the entire distribution
iv

. We do the same with the lower 90
th

 percentile for the 

definition of extreme cold events. We do not include the intensity of extremes events as it leads 

to multicollinearity. We believe this approach corresponds to a more appropriate definition of a 

local extreme than counting the number of days above/below a specific thresholds (Ritchie and 

NeSmith, 1991). The basic statistics of our climate data are reported in table 1 below. They 

indicate the level of heterogeneity that is present between high- and low-elevated counties.  
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<< Insert table 1 here >> 

 

Including variables that reflect the quality and topography of the land (matrix “land”) is standard 

in the Ricardian literature. Soil characteristics data do not vary with time and are available from 

USDA’s General Soil Map (STATSGO2) National Resource Inventory. We do not include them 

all due to problems of perfect collinearity. We select the soil erodibility factor (K-factor in the 

Universal Soil Loss Equation), permeability, moisture capacity and clay content. Erosion is a 

measure of the loss of fertile topsoil. It is a problem in the arid or semi-arid parts of the 

Southwest because the soils are shallow and with an inadequate vegetative cover due to low 

annual precipitation and soil water storage capacity. Permeability refers to the ease with which 

pores in a saturated soil transmit water. In the Southwest, the soil is less permeable than in other 

parts of the country. Poor levels of permeability in the soil layers close to the surface can hinder 

root development and restrict water movement. The soil moisture capacity refers to the quantity 

of water that the soil is capable of storing for use by plants. Its volume is a function of the 

difference between precipitation that infiltrates the soil and evapotranspiration that removes 

moisture from the soil. In the Southwest, the difference between these two processes varies by 

region and by season. Finally, the level of clay content is inversely related to the quality of the 

soil. Our soil data are transformed like the climate data above to match county boundaries.  

We also include elevation measurements provided by the USGS National Elevation 

Dataset. However, its role is not measured through a regressor but as the variable used to split 

our sample into sub-groups. More precisely, we use the median value of elevation (1890.583 

meters)
v
 to differentiate the marginal effect of the above regressors on the mountains, high plains 

and plateaus of Colorado, northern New Mexico, northern Arizona and the Northeastern part of 
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Utah from the marginal effect in the less elevated counties of southern Arizona, southern New 

Mexico and the eastern part of Colorado. This form of spatial heterogeneity will be tested 

econometrically and confirmed by a significant Chow test across all our specifications. 

The variables capturing human intervention are all measured in 2007. They include 

population density, which acts as a proxy for demand and for the potential effect of development 

upon farmland value as well as per capita income. They come from the Regional Economic 

Accounts developed by the Bureau of Economic Analysis. We also use two variables that 

directly affect the production process, i.e. irrigation quantified as the share of irrigated farmland 

and fertilizer per acre. Last but not least, we investigate the role of the federal government 

through 7 types of agricultural subsidies
vi

. The latter variable is measured as the sum over 2003-

2007 per acre of farmland and comes from the US Census Bureau Consolidated Federal Fund 

Report.  

Before closing this section, it is important to provide a few words about the specification of 

the spatial weight matrix we use. It aims at capturing the capacity of farmers to integrate in their 

production process the knowledge/information generated elsewhere. Farmers are sensitive to 

information brought by their peers whether it is in the frame of their personal (Cochrane, 1979; 

Rogers, 1995) or business-related network (Berger, 2001; Polsky, 2004). However, much 

heterogeneity exists in the capacity or desire of farmers to adopt new information. For instance, 

Berger (2001) demonstrates that there are thresholds to innovation adoption based on each 

farmer’s financial and personal situation. Farmers with a high net benefits from adoption and low 

information, planning and psychological adjustment costs innovate first while others will follow 

when their higher costs decrease with information spillovers. Another example is Munshi (2004) 

who shows that social learning is more restricted among rice growers than among wheat growers 



16 
 

in India, probably because the former have a less strong social network. Education plays a key 

role too as it has been found empirically to positively affect a farmer’s decision to adopt a new 

seed (Lin, 1991). Other sources of heterogeneity such as bandwagon behavior and forced 

adoption (by the government) of technically inefficient technology have been highlighted by 

Snedon et al. (2011) and challenge the usual assumption that the choice to adopt or reject new 

agricultural technologies is based on an economically rational choice. 

The above studies rely on farm level information that is not available for our sample. As a 

result, we proxy for the capacity of farmers to adopt new technology and information developed 

elsewhere by relying on the (per acre) agricultural output ratio between county i and county j : 

𝐺𝐷𝑃𝑖/𝐺𝐷𝑃𝑗 . It implies that for any pair i-j of counties the spillovers 𝑊𝑖𝑗 and 𝑊𝑗𝑖 are asymmetric 

and the leading region (say i) benefits from its economic advantage to absorb information from j 

better than j absorbs information from i (𝑊𝑖𝑗 >  𝑊𝑗𝑖).  

In addition, we limit the spatial extent of spillovers as the literature has shown that the 

process of knowledge diffusion is restricted spatially due to the face-to-face contacts it relies on 

(Jaffe, 1986). We choose a cut-off of 240 kilometers as it corresponds to the minimum distance 

necessary to connect every county to at least two neighbors. We prefer a great-circle distance 

approach than one based on neighborhood contiguity as the latter does not account for the 

continuous nature of the physical landscape and climate conditions. We then globally standardize 

the elements of the matrix for the reasons described in Kelejian and Prucha (2010). 

 

4. Estimation results 

Table 2 starts with an OLS estimation of the basic model (1). The results indicate that irrigation 

plays a significantly positive role in the Southwest. It confirms our expectation that controlling 
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water supplies leads to higher yield and land values. As noted by Plantinga et al. (2002), denser 

counties have a greater propensity to buy farmland for higher-valued activities, which explains 

the positive coefficient associated to density. While per capita income is generally assumed to 

increase farmland values, in the Southwest the need for land to be converted to urban purposes is 

largely limited to the few existing urban centers. As a result, it is not surprising that income does 

not have a significant role on farmland values. Among the soil characteristics, our results 

confirm the negative role of erosion on productivity and hence on farm values. The other soil 

characteristics do not display a significant role.  

While it seems intuitive that more precipitation would benefit agriculture in a dry area like the 

Southwest, we find a negative impact of winter precipitation on agriculture. It could be due to the 

bulk of the water (60%) being delivered in the form of snow in the highland counties and/or the 

heavy rainfall that follows winter storms – both in highland and the lowland of the Southwest 

interior - and lead to floods (Garfin et al., 2013). Yet, the effect is not linear as reflected by the 

positive impact of maximum winter precipitation. We believe it is because beyond some 

threshold winter precipitation contributes to building a snowpack that provides a natural and 

reliable water reservoir for the region throughout the rest of the year. Maximum fall precipitation 

is also found to act positively on agriculture. Not surprisingly, extreme heat events hurt 

agriculture. Several heat waves lasting several days take place every year in the Southwest with a 

greater frequency in the lowland counties. In addition to agriculture, they also affect the 

ecosystems, hydrology and human health.  For instance, the 2013 heat wave reached a record 49 

C in Arizona and led to a wildfire that cost the lives of 19 firefighters. Extreme cold events are 

not found to significantly impact agriculture probably because they are less frequent than heat 

waves (see table 1).  
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Several econometric aspects deserve additional attention in this specification. First, we need to 

deal with the potential simultaneity issue of the average 2003-2007 farm subsidies on the 2007 

farmland values. We choose as instrument the farm subsidies allocated in 2003 only. We use a 

past value in order to guarantee its exogeneity. In addition, we decided to select a year posterior 

to the 2002 farm bill as the decoupling principles governing the allocation of fixed income 

support payments, i.e. their independence from farm prices, production and planting decisions, 

started with the 1996 Federal Agriculture Improvement and Reform Act but took full effect in 

2002 only. As a result, we believe that subsidies allocated past 2002 are less correlated with farm 

values than in prior years. A Wu-Hausman test indicates that the 2003-2007 farm subsidies are 

an endogenous regressor at the 10% level of significance. The OLS estimates are thus biased and 

inconsistent and a two-stage-least-square approach is necessary.  

Second, the entire sample can be split into highland vs. lowland counties (n=62 in each sub-

sample) because, as noted previously, elevation leads to differences in climate and ecosystems. 

In addition, the work of Zhang et al. (2013) indicates that the degree of sensitivity of agriculture 

to extreme weather events varies across ecosystems and the seasonality of precipitation varies 

across regions of the Southwest due to their altitude (Garfin et al., 2013). The presence of these 

two sub-groups is confirmed by a significant Chow test (p-value < 0.000) for all models. It can 

also be at the origin of the significant heteroskedasticity the Breusch-Pagan test result indicates. 

Finally, we detect the significant presence of spatial error autocorrelation (Moran’s I statistics 

has a p-value =0.001), which could be due to the lack of consideration for spatial externalities in 

this model as described in section 2. 

Before we focus on this hypothesis, we first re-estimate model (1) by two-stage-least-square, 

control for the presence of heterogeneity across lowland and highland counties and we report 
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robust standard errors (BP test is significant in each group at 10%). The first stage regression 

indicates that the 2003 farm subsidies are not a weak instrument. Indeed, the associated Wald-F 

statistics are 99 and 388 for the highland and lowland counties respectively, i.e. well above the 

Staiger and Stock (1997) rule-of-thumb of 10. Their associated p-value is below 0.000. The 

coefficient estimates presented in column 2 confirm the role of irrigation. Its elasticity is greater 

in the lowland counties where water is scarcer. Fertilizer is found to have a positive and 

significant role on farm value, although in lowland counties only. Highland counties experience 

better soil quality, hence they are less dependent on fertilizer. Population density is still a 

significant factor with little to no difference in its return by elevation. Agricultural subsidies are 

found to act positively on farm value, a result that has already been highlighted in the literature 

(Goodwin et al., 2003; Roberts et al., 2003), although it is significant among highland counties 

only. We also find a significant harmful effect of summer temperature on agriculture, but only in 

the highland counties. The rest of the climate variables acts similarly in highland counties as in 

model (1) while the extreme heat events are the only variable impacting agriculture in lowland 

counties. Not surprisingly, the effect is negative.  

<< Insert table 2 here >> 

As spatial error autocorrelation is still present among highland counties at 10% and the spillovers 

have been ignored in the previous two specifications, we now turn to estimating model (4) with 

two combinations of spatial lags: only the climate variables and the climate plus socio-economic 

variables. The results are reported in columns 3 and 4 of table 3. For each group, the direct 

effects are robust across specifications and are consistent with those found in model 2 where 

spillovers are not included. The spillover effects are also robust across specifications in the 

highland counties. We find that the maximum winter precipitation falling in neighboring 
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counties act in a similar way as their direct effect and contribute to the formation of a natural 

water reservoir for the rest of the year. Maximum spring precipitation falling in the neighbors 

acts negatively on a county’s agriculture. It is mostly abundant in the Western parts of Colorado 

and Utah and takes the form of intense but short-lived rainfall that can lead to increased 

streamflow and floods damaging local production in less elevated regions. In the lowland 

counties, the spillovers are found to be somewhat sensitive to the specification under study 

although the externalities of population density, summer temperature and winter precipitation are 

consistent across models. Model specification 4 also reports that irrigation taking place across 

neighbors is found to harm local agriculture. Several contributions have already highlighted that 

this process comes from local stream or groundwater depletion intensive irrigation leads to 

(Kuwayama and Brozovic, 2013; Kang and Dall’erba, 2014)
 1

.  

The theoretical, empirical and statistical results indicate that spillover effects need to be 

accounted for to match our model to the actual data generating process of farmland values. Their 

presence indicates that the estimates of the a-spatial model are biased and inconsistent. Yet, we 

have explored the role of the first-order neighborhood spillovers so far. If they are global in 

nature, i.e. they rely on several orders of neighborhood and include feedback effects, then the 

estimates of specifications 3 and 4 are biased and inconsistent. We report in specification 5 the 

spatial 2SLS results of the spatial lag model (6). As usual in the spatial econometric literature 

(e.g. Kelejian and Prucha, 1998; Robalino and Pfaff, 2012), the instruments used for the spatial 

lag of the dependent variable are WX (the neighbors’ characteristics) and WWX (the neighbors’ 

neighbors’characteristics). In addition, we use the same instrument as above for the agricultural 

                                                      
1
 A specification with the spatial lag of all the regressors leads to direct and indirect effects that are robust to 

previous specifications for both subgroups, although the indirect effect of irrigation is not significant anymore. 

Since, as expected, the spillovers of the soil characteristics are not statistically significant (ecological fallacy) and 

the fit of such a model does not outperform the one of model 4, we do not display its results.  
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subsidies. We follow the decomposition method of Le Sage and Pace (2009) in order to 

dissociate the direct effects from the indirect effects. Their significance level is based on 

simulated values (10,000 random draws) for the parameters from the estimated variance-

covariance matrix. In addition, we control for heteroskedasticity as the spatial BP test is 

significant. Estimation results confirm the direct effects found in previous specifications. 

However, only two types of spillovers are found significant among highland counties (one is 

close to the 10% threshold) and none in the lowland counties, which leads us to conclude that the 

relevant spillovers are not global in nature. 

 

5. Projected global climate change and its impact on agriculture  

This section calculates future farmland values based on dynamically downscaled climate 

conditions simulated for the period 2038-2070 and the estimates of specification 4 as an F-test 

indicates that it significantly outperforms the a-spatial model (specification 2) at the 5% level for 

the highland counties, although both models perform equally for the lowland counties. Previous 

Ricardian studies on the US counties have also aimed at estimating the impact of future climate 

conditions on agriculture and their results tend to differ. Some estimate an annual gain in the 

future (+4% inDeschenes and Greenstone, 2007; +0.7-1.2% in Mendelsohn et al., 1994; + 1.5% 

in Massetti and Mendelsohn, 2011) while others do not (-10 to -25% in Schlenker et al., 2006). 

The differences in their results come from the dependent variable used (profits vs. land value), 

differences in the specifications of the temperature and precipitation data, in the sample, 

concerns for irrigated vs. dryland counties, the use of cross-section vs. panel data and the time 

periods (past and future) under study. Eventually, our analysis is closer to the one of Polsky 

(2004) because he focuses on only one area of the United States, namely the Great Plains, and 
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concludes to an estimated gain between 0.5-6% depending on the reference year.   

In this paper, we use state of the art future climate projections that rely on GCMs driven by 

different greenhouse gas emission scenarios. The driving GCMs use the SRES A2 emission 

scenario for future greenhouse gas emissions as described in the IPCC 4
th

 Assessment Report 

(IPCC, 2007). The A2 scenario describes a world with a continuously increasing population, an 

emphasis on economic growth and regionally oriented economic development (heterogeneous 

world) (Nakicenvoic et al., 2000). The projected CO2 concentrations based on this scenario are 

about 575ppm and 870ppm by the middle and end of the 21
st
 century, respectively, which 

corresponds to a global temperature rise of around 3.5°C between 2000-2100. However, GCMs 

generally do not realistically represent precipitation due to their coarse spatial resolution and 

physical parameterizations, especially in complex terrain. Consequently, the models must be 

downscaled using either statistical or dynamical downscaling (see Fowler et al., 2007, for details 

on the two methods). In this work we rely on dynamical downscaling because it provides a 

physically based method to bring the global scale projections to the regional scale using RCMs, 

it can simulate changes that have never been observed in the historical period, addressing the 

issue of non-stationarity (Fowler et al. 2007), and it better captures mean and extreme 

precipitation at the regional scale as stated by Leung and Qian (2009). In the end, it permits us to 

create a dataset of climate indicators at the same scale as the economic indicators and is thus 

more appropriate for estimating the impact at the local scale. To our knowledge, this is the first 

time that dynamically downscaled data are used to drive a Ricardian model. 

Instead of relying on one model of future climate projections like previous contributions, this 

study uses seven NARCCAP (North American Regional Climate Change Assessment Program) 

simulations based on different GCM-RCM combinations. It is also important to note that 
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NARCCAP uses the A2 scenario because it is at the higher end of the emissions scenarios in the 

Fourth Assessment Report (but not the highest), making it particularly useful for adaptation work 

because it gives an upper bound on projected changes. The global climate models used in 

NARCCAP are: the Community Climate System Model; the Third Generation Coupled Global 

Climate Model; the Geophysical Fluid Dynamics Laboratory; the Hadley Centre Coupled Model 

(v.3) and the regional climate models are the Canadian Regional Climate Model (v.4); the Pen. 

State University NCAR Mesoscale Model; the International Centre for Theoretical Physics 

Regional Climate; the NCAR Weather Research and Forecasting Model. Table 3 shows the 

sample average change of the simulated climate variables between 2038-2070 and 1968-2000 

while the last column provides the average and standard deviation. These statistics reflect that 

there is some discrepancy on the magnitude and, sometimes, the direction of the change. It is due 

to the set of assumptions each model relies on and of which description is beyond the scope of 

this paper. Overall, the models predict a future that will be hotter with more winter precipitation 

but less monsoon precipitation in summer. Mean winter precipitation is projected to increase 

over northern Colorado and Utah, while southern Arizona and New Mexico show decreased 

winter precipitation (Dominguez et al. 2012) – however, averaged over the region, winter 

precipitation is expected to increase. Maximum precipitation is assumed to increase every 

season. The frequency of heat and cold waves is projected to increased too, although to a lower 

extent. All these results are in tune with the projections reported in Garfin et al. (2013). 

<< Insert table 3 here >> 

 

 Based on these seven models, we project future average farmland values for the highland 

and lowland counties and report their minimum (and 95% lower bound), maximum (and 95% 
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upper bound), standard deviation and mean in figure 1. All the results are based on a 5% 

discount rate as in Mendelsohn et al. (1994), Deschenes and Greenstone (2009). Using a lower 

value (2.9% as in Schlenker et al., 2005) does not change our conclusions. We find that all 

models predict an average loss (the overall average is -128.59%) in the highland counties, 

although the likelihood of a gain is still within the 95% confidence interval of each model (see 

figure 1). For the lowland counties, the overall average of the predictions is also a loss (-2.33%). 

However, the distribution of the predictions reported in figure 1 indicates a relatively equal 

probability of gain or loss once the 95% confidence interval is accounted for
vii

. While it is 

difficult to pinpoint with certainty the reasons for the difference across sub-samples, we note that 

land value in highland counties is negatively affected by heat waves (table 2) of which frequency 

will increase in the future (table 3). In addition, land productivity in lowland counties is less 

sensitive to climate conditions (see table 2) as it relies more than the highland counties on 

irrigated water of which extent is not assumed to change in these simulations.  

<< Insert figure 1 here >> 

 

6. Conclusion 

In addition to being the hottest and driest region of the country, the Southwest of the U.S. is 

expected to meet increasingly challenging climate conditions in the future. Yet, there is very 

little expertise with regards to how agriculture, a sector that consumes a large share of its land, 

will be affected. This paper fills this gap by offering a Ricardian model that estimates the 

sensitivity of farmland value to climate and by treating some of the usual caveats of the 

Ricardian literature. First, we limit our analysis to counties that belong to the same climate zone. 

The role of various climate zones has been overlooked in the literature, even though this form of 
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spatial heterogeneity can lead to unreliable estimates if not accounted for. Even in a limited 

sample like ours, we find out that the variety of climate conditions obliges us to treat 

heterogeneity in the form of two clusters (high- vs. low-elevated counties) which are consistent 

across all specifications. Secondly, we use a dataset and dynamically downscaled projections that 

allow us to explicitly account for changes in the frequency of heat and cold waves as well as very 

heavy precipitation at the local scale. Several global climate models suggest that such events will 

likely become more frequent and more intense in the future (Tebaldi et al., 2006, Dominguez et 

al. 2012), hence their role needs to be investigated as well. Another contribution consists in 

paying attention to the role and endogeneity of government-funded farm subsidies. Finally, this 

work offers various ways of controlling for spillovers effects which come from similarity in 

farming practices across nearby counties (Ezcuerra et al., 2008), social and professional 

interaction between farmers (Rogers, 1995; Polsky, 2004), their capacity to absorb knowledge 

developed elsewhere (Berger, 2001) and water run-offs or floods that makes each location 

depends to various degrees on weather events, information and technology that originate from a 

different location. We also test the nature of these spillovers and find that the model that is closer 

to the actual data generating process needs to include the first-order spillovers of the climate and 

socio-economic factors only. Global spillovers and their feedback effects prove non-significant.  

In such a model, the coefficient estimates confirm the expected positive role of irrigation and 

population density. Agricultural subsidies are found to support farmland values but only among 

highland counties. While the soil conditions play a negligible role, the results highlight the non-

linear, seasonal and heterogeneous role of climate on agriculture. As expected, heat waves are 

found to hurt productivity. Our estimates also indicate that land values in one location are 

significantly influenced by irrigation and climate conditions in neighboring locations. We believe 
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their effect takes place through water depletion (irrigation), steady water run-offs and/or sudden 

floods that follow intense rainfall.  

Future climate conditions are expected to lead to decreasing (summer) precipitation, hotter 

summers, and more frequent and intense extreme events in the Southwest. As a result, we rely on 

seven combinations of regional-global climate models to project future climate conditions and 

forecast future farmland values. While previous contributions rely on only one model, our 

approach allows us to account for model uncertainty in projections and to generate an interval of 

future farmland values. We find that the probability of a loss is greater than the alternative in the 

highland counties whereas gains and losses are relatively equally probable in lowland counties. 

The latter are less sensitive to climate conditions as they rely more on irrigation than the 

highland counties. In addition, more frequent heat waves are expected to hurt the future land 

productivity in the highland counties.  

It is important to note our projection efforts are constrained by the usual set of limitations 

inherent to the Ricardian literature, namely the controversial assumptions of constant technology, 

market structure, input and output quantities and prices in the future (Schlenker et al., 2006). For 

instance, an increase in population in the Southwest could escalate the water demand stress on 

the local ecological and agricultural systems. We have also assumed that irrigation will continue 

at its current rate in the future when, in reality, irrigation depends on the availability of water 

from the Colorado River. If climate change dramatically affects water resources in the Colorado, 

then the effects on the southwestern agriculture would be dramatic. In the absence of appropriate 

remedy to the above limitations, we think that future work should focus on identifying the 

sectors and places that are the most likely to lack the capacity to adapt to a future with more 

scarce water but more frequent and intense extreme precipitation and temperature events. 
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i
 San Juan, Gilpin, Clear Creek and Lake in Colorado as well as Los Alamos in New Mexico. 

ii
 Davis, Salt Lake in Utah; Maricopa in Arizona; Bernalillo in New Mexico; Boulder, Jefferson, 

Denver and Arapahoe in Colorado. 

iii
 Point climate values are transformed to continuous variation over the conterminous US using 

an inverse distance weighting interpolation method. Based on these continuous values, we 

performed a zonal sum analysis to calculate each county’s average climate values. ArcGIS 10 

was used for this task. 

iv
 We thank an anonymous referee for suggesting this definition.  

v
 The median value guarantees equal number of observations across groups and, in our case, is 

relatively close to the average level of elevation (1934.089 meters). 

vi
 Crop insurance, production flexibility payments, grants for agricultural research, conservation 

reserve program, environmental quality incentives program, crop disaster program, emergency 

conservation program. 

vii
 Since a F test cannot distinguish statistically the fit of models 2 and 4 for the lowland counties, 

we performed the projection exercise for model 2 also. All models indicate a clear loss, even 

including the 95% confidence interval. 
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Table 1- Summary statistics  

 High elevation counties  

(≥1.89 km) 

Low elevation counties  

(<1.89 km) 

Variable �̅� 𝒙 Min Max �̅� 𝒙 Min Max 

summer 

Temperature 

( C) 18.140 2.909 12.276 22.949 24.534 1.544 21.678 30.156 

summer 

precipitation 

(mm/day) 1.495 0.406 0.777 2.220 1.513 0.410 0.471 2.232 

winter 

precipitation 

(mm/day) 1.142 0.382 0.492 2.021 0.698 0.275 0.374 1.617 

Max. spring 

precipitation 

(mm/day) 12.380 2.918 7.000 21.679 13.898 5.852 3.978 25.388 

Max. 

summer 

precipitation 

(mm/day) 15.992 4.885 8.449 27.296 16.061 4.070 6.363 23.992 

Max. fall 

precipitation 

(mm/day) 13.845 3.041 9.000 20.510 13.666 3.785 6.775 21.710 

Max. winter 

precipitation 

(mm/day) 10.731 1.886 6.978 16.687 11.646 3.258 6.465 21.810 

Extreme heat 

event 

(frequency) 4.456 0.986 3.113 7.067 5.904 0.964 3.933 7.868 

Extreme cold 

event 

(frequency) 2.775 0.579 2.019 4.219 2.818 0.423 1.817 3.767 
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Table 2- Estimation results - Dependent variable: ln(farm value/acre). Number in parenthesis are p-values. 

 
1 - 

OLS 

2- No spillover - 

2SLS 
3- SLX model (climate) - 2SLS 4- SLX model (eco & climate) - 2SLS 4- SAL model – 2 SLS 

  High* Low* 

High Low High Low High* Low* 

Direct 
effect 

Indirect 
effect 

Direct 
effect 

Indirect 
effect 

Direct 
effect 

Indirect 
effect 

Direct 
effect 

Indirect 
effect 

Direct 
effect 

Indirect 
effect 

Direct 
effect 

Indirect 
effect 

Intercept 
6.540 

(0.000) 

7.762 

(0.000) 

8.919 

(0.000) 

7.732 

(0.000) 
 

7.912 

(0.005) 
 

7.081 

(0.000) 
 

9.179 

(0.002) 
     

Irrigation 
0.014 

(0.000) 

0.009 

(0.000) 

0.015 

(0.000) 

0.004 

(0.088) 
 

0.015 

(0.010) 
 

0.005 

(0.055) 

-0.031 

(0.048) 

0.018 

(0.002) 

-0.057 

(0.054) 

0.009 

(0.000) 

0.004 

(0.147) 
0.016 

(0.000) 

0.008 

(0.149) 

Fertilizer 
0.014 

(0.123) 

-0.018 

(0.141) 
0.057 

(0.003) 

-0.016 

(0.423) 
 

0.036 

(0.221) 
 

-0.014 

(0.561) 

0.228 

(0.200) 

0.014 

(0.741) 

0.301 

(0.116) 
-0.018 

(0.035) 

-0.009 

(0.247) 
0.045 

(0.025) 

0.023 

(0.150) 

Per capita 
income 

0.004 
(0.383) 

0.002 
(0.521) 

0.003 
(0.771) 

0.008 
(0.210) 

 
0.009 

(0.609) 
 

0.012 
(0.116) 

0.036 
(0.380) 

-9.10−4 
(0.961) 

-0.111 
(0.283) 

0.004 
(0.244) 

0.002 
(0.415) 

0.004 
(0.725) 

0.002 
(0.771) 

Pop. 

density 
0.004 

(0.000) 

0.004 

(0.000) 

0.002 

(0.010) 

0.003 

(0.014) 
 

0.003 

(0.102) 
 

0.001 

(0.424) 

0.008 

(0.581) 
0.007 

(0.021) 

0.043 

(0.011) 

0.004 

(0.000) 

0.002 

(0.107) 

0.002 

(0.007) 

0.001 

(0.206) 

Ag. 

subsidies 
9.10−4 
(0.555) 

0.008 

(0.064) 

-2.10−4 
(0.892) 

0.013 

(0.028) 
 

0.001 

(0.638) 
 

0.012 

(0.034) 

0.010 

(0.724) 

0.002 

(0.481) 

0.001 

(0.934) 
0.007 

(0.003) 

0.003 

(0.183) 
-5.10−4 
(0.820) 

-2.10−4 
(0.829) 

Erosion 
-2.889 

(0.025) 

-0.635 

(0.643) 
-4.501 

(0.035) 

1.054 

(0.575) 
 

-3.883 

(0.136) 
 

1.185 

(0.553) 
 

-2.285 

(0.443) 
 

-0.241 

(0.849) 

-0.122 

(0.836) 
-2.988 

(0.092) 

-1.513 

(0.260) 

Perm. 
4.10−4 

(0.890) 

-0.003 

(0.113) 

-0.015 

(0.188) 

-0.006 

(0.104) 
 

-0.005 

(0.749) 
 

-0.006 

(0.088) 
 

-0.018 

(0.283) 
 

-0.004 

(0.036) 

-0.002 

(0.256) 

-0.014 

(0.144) 

-0.007 

(0.312) 

Moisture 
capacity 

3.604 
(0.337) 

-2.658 
(0.479) 

4.955 
(0.444) 

-3.927 
(0.504) 

 
3.771 

(0.629) 
 

-4.968 
(0.414) 

 
4.957 

(0.491) 
 

-3.019 
(0.416) 

-1.528 
(0.520) 

3.173 
(0.585) 

1.607 
(0.641) 

Clay 

content 

0.012 

(0.473) 

0.020 

(0.300) 

-0.011 

(0.646) 

0.007 

(0.767) 
 

-0.019 

(0.570) 
 

0.001 

(0.953) 
 

-0.049 

(0.191) 
 

0.011 

(0.510) 

0.005 

(0.610) 

-0.015 

(0.489) 

-0.007 

(0.558) 
Temp. 

summer 

0.018 

(0.499) 
-0.113 

(0.041) 

-0.034 

(0.448) 
-0.112 

(0.070) 

0.116 

(0.595) 

-0.078 

(0.351) 

0.227 

(0.172) 

-0.091 

(0.149) 

0.049 

(0.852) 

-0.055 

(0.494) 
0.526 

(0.010) 

-0.057 

(0.250) 

-0.029 

(0.412) 

0.038 

(0.378) 

0.019 

(0.482) 

Precip. 
winter 

-0.533 

(0.043) 

-1.085 

(0.000) 

-0.371 
(0.466) 

-0.770 

(0.074) 

-2.759 
(0.222) 

-0.162 
(0.860) 

0.963 
(0.238) 

-0.543 
(0.248) 

-2.620 
(0.261) 

-1.235 
(0.205) 

4.843 

(0.061) 

-0.877 

(0.000) 

-0.444 

(0.081) 

-0.122 
(0.790) 

-0.061 
(0.880) 

Precip. 

summer 

-0.222 

(0.238) 

-0.329 

(0.352) 

-0.268 

(0.374) 

-0.250 

(0.514) 

0.595 

(0.579) 

-0.072 

(0.872) 

-0.080 

(0.929) 

0.090 

(0.831) 

-0.699 

(0.638) 

0.185 

(0.702) 

-1.833 

(0.265) 

0.127 

(0.715) 

0.064 

(0.642) 

0.110 

(0.733) 

0.055 

(0.667) 
Max. 

winter 

precip. 

0.081 

(0.007) 

0.092 

(0.018) 

0.066 
(0.126) 

0.106 

(0.056) 

0.717 

(0.066) 

0.059 
(0.239) 

-0.065 
(0.658) 

0.126 

(0.033) 

0.734 

(0.068) 

0.094 

(0.063) 

-0.433 

(0.091) 

0.075 

(0.032) 

0.038 
(0.168) 

0.066 

(0.013) 

0.033 
(0.186) 

Max. 

spring 

precip. 

-0.032 

(0.048) 

0.015 
(0.528) 

-0.032 
(0.188) 

0.058 

(0.098) 

-0.399 

(0.012) 

-0.040 
(0.229) 

0.089 
(0.160) 

0.033 
(0.352) 

-0.392 

(0.022) 

-0.028 
(0.408) 

0.245 

(0.004) 

-0.002 
(0.922) 

-0.001 
(0.819) 

-0.036 
(0.150) 

-0.018 
(0.355) 

Max. 

summer 

precip. 

0.016 

(0.350) 

0.019 

(0.393) 

0.040 

(0.161) 

0.002 

(0.929) 

0.006 

(0.937) 

-0.007 

(0.895) 

0.091 

(0.500) 

-0.013 

(0.666) 

0.043 

(0.660) 

-0.007 

(0.878) 

0.022 

(0.900) 
8.10−4 

(0.965) 

4.10−4 

(0.923) 

0.025 

(0.426) 

0.012 

(0.550) 

Max. fall 

precip. 
0.034 

(0.032) 

0.111 

(0.000) 

0.010 

(0.631) 
0.100 

(0.003) 

-0.007 

(0.953) 
1.10−4 

(0.996) 

-0.034 

(0.740) 
0.095 

(0.015) 

-0.039 

(0.840) 

0.050 

(0.225) 

-0.248 

(0.116) 
0.108 

(0.000) 

0.054 

(0.090) 

0.010 

(0.652) 

0.005 

(0.764) 

Ext. heat 

events 
-0.301 

(0.000) 

-0.207 

(0.041) 

-0.309 

(0.009) 

-0.213 

(0.075) 

-0.525 

(0.316) 

-0.073 

(0.777) 

-0.695 

(0.227) 
-0.247 

(0.059) 

-0.028 

(0.964) 

-0.420 

(0.141) 

-0.384 

(0.548) 
-0.211 

(0.015) 

-0.107 

(0.160) 
-0.257 

(0.020) 

-0.130 

(0.182) 

Ext. cold 
events 

-0.015 
(0.909) 

0.104 
(0.382) 

-0.040 
(0.852) 

-0.124 
(0.457) 

-0.068 
(0.868) 

0.333 
(0.323) 

-1.189 
(0.125) 

-0.106 
(0.541) 

0.065 
(0.891) 

0.265 
(0.412) 

-0.806 
(0.332) 

0.089 
(0.426) 

0.045 
(0.529) 

-0.147 
(0.479) 

-0.074 
(0.571) 

Adj-R2 0.684 0.737 0.626 0.805 0.595 0.814 0.665  
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Moran’s I 
0.091 

(0.024) 

0.067 

(0.098) 

0.036 

(0.216) 

-0.018 

(0.966) 

0.053 

(0.188) 

-0.073 

(0.843) 

-0.067 

(0.750) 

-0.075 

(0.919) 

(Spatial) 
BP test 

40.726 
(0.001) 

26.614 
(0.086) 

32.265 
(0.020) 

25.311 
(0.557) 

36.182 
(0.111) 

29.314 
(0.603) 

36.169 
(0.280) 

62.624 
(0.003) 

*: Huber-White robust standard errors.  
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Table 3- Climate change for each RCM-GCM model (2038-2070 vs. 1968-2000)  

 

(1) 

CRCM  

+ ccsm 

(2) 

CRCM + 

cgcm3 

(3) 

MM5I  

+ ccsm 

(4) 

RCM3 + 

cgcm3 

(5) 

RCM3 + 

gfdl 

(6) 

WRF    

+ ccsm 

(7) 

WRF   + 

hadcm3 

Average 

And 

St. 

dev. 

Temp. summer 

( C) 3.318   3.173   2.245   0   2.668     2.858   2.734   

2.428 

1.126 

Precip. winter 

(mm/day)  -1.063     6.523     -0.867    7.268     1.944     2.795     2.774   

2.768 

3.238 

Precip. 

summer 

(mm/day) -12.30  -9.373     -0.753     1.205    -0.951     -9.397     6.078   

-3.642 

6.764 

Max. winter 

precip. 

(mm/day)   1.593      11.519     5.030    10.315     2.277     8.195    8.547   

6.782 

3.880 

Max. spring 

precip. 

(mm/day)   3.283      11.051     7.614    17.58     7.654     8.182     7.184   

8.935 

4.438 

Max. precip. 

summer 

(mm/day)   -2.006    -3.663     4.081    11.637    13.52      4.716     5.317   

4.800 

6.345 

Max. fall 

precip. 

(mm/day)   5.081       14.44    14.828    17.136     5.576     10.660   8.827   

10.935 

4.715 

Ext. heat 

events 

(frequency)  0.087 -0.023  0.122    0.021  0.219    -0.211   7.209 

1.061 

2.715 

Ext. cold 

events 

(frequency)  0.170  0.231    -0.041  0.005 -0.218   0.037 -0.025 

0.023 

0.147 
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Figure 1 – Percent change compared to 2003-2007 fitted values (upper bound, average, lower 

bound) 

 
 

Models: (1) CRCM + ccsm; (2) CRCM + cgcm3; (3) MM5I + ccsm; (4) RCM3 + cgcm3; (5) RCM3 + gfdl; (6) WRF+ 

ccsm; (7) WRF + hadcm3 


