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Abstract: Griliches’ knowledge production function has been increasingly adopted at the regional 

level where location-specific conditions drive the spatial differences in knowledge creation 

dynamics. However the large majority of such studies relies on a traditional regression approach 

that assumes spatially homogenous marginal effects of knowledge input factors. This paper 

extends the authors’ previous work (Kang and Dall’erba, 2015) to investigate the spatial 

heterogeneity in the marginal effects by using nonparametric local modeling approaches such as 

Geographically Weighted Regression (GWR) and Mixed GWR with two distinct samples of the 

US Metropolitan Statistical Area (MSA) and non-MSA counties. The results indicate a high 

degree of spatial heterogeneity in the marginal effects of the knowledge input variables, more 

especially for the local and distant spillovers of private knowledge measured across MSA counties. 

On the other hand, local academic knowledge spillovers are found to display spatially 

homogenous elasticities in both MSA and non-MSA counties. Our results highlight the strengths 

and weaknesses of each county’s innovation capacity and suggest policy implications for regional 

innovation strategies. 

Keywords: Knowledge production function, knowledge spillovers, spatial heterogeneity, Mixed 

Geographically Weighted Regression (MGWR)  

JEL classifications: C21, O31, R11 
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1 Introduction 

Compared to Griliches’ (1979) original firm-focused knowledge production function, successive 

developments in the literature have recognized the critical role of localized knowledge spillovers (Audretsch and 

Feldman 2004). It has led to a surge of studies focusing on a regional approach of knowledge creation (Anselin et al. 

1997; Audretsch and Feldman 1996; Bode 2004; Jaffe 1989). Shifting observation from the firm-level to the 

regional level does not lead to a mere aggregation of individual firm units. Instead, it implicitly assumes that 

innovative activities and local knowledge spillovers between individual firms are not negligible and prevalent within 

the spatial unit (Audretsch and Feldman 2004). Another motivation for using aggregated units is that the role of 

region-specific characteristics is crucial in knowledge creation. Each region has a specific institutional environment 

organized by frequent interactions and reciprocal trust between entrepreneurs, universities and government agencies 

within the region (Döring and Schnellenbach 2006). And since such an institutional environment plays an important 

role in intra-regional collective synergies and externalities (Harris 2011), we should expect the mechanisms that 

shape intra-regional knowledge creation to be as spatially heterogeneous across regions as institutional environments 

are. 

However, spatial variations in the capacity to innovate are not limited to intra-regional activities only. 

Firms in one location benefit from knowledge created in distant sources (Rosenkopf and Almeida 2003) to the point 

where remote partners can be a firm’s strongest partner for innovation (Asheim and Isaksen 2002; Gertler and 

Levitte 2005; Trippl et al. 2009). Yet, at the regional level, the ability to capitalize on such external sources of 

knowledge creation, i.e. the region’s absorptive capacity (Cohen and Levinthal 1990), is still subject to local 

conditions such as the quality of its institutions, its geography and the level of agents’ interactions within the region 

(Agrawal et al. 2010). As such, one should expect the absorptive capacity and the dynamics of knowledge creation 

in any region to be different from what they are in all the remaining regions.  

Nevertheless, most empirical studies of the regional knowledge production function presume spatially 

homogenous marginal effects of the knowledge input factors (Anselin et al. 1997; Jaffe 1989; Ó hUallacháin and 

Leslie 2007; Ponds et al. 2010). Indeed, in the traditional regression approach, the coefficient associated with a 

variable corresponds to its average impact across the entire sample, which may mask a positive impact in some areas 

and a less positive or even negative one in other areas (McMillen and Redfearn 2010). In order to measure the 

potential presence of heterogeneity, we adopt a geographically weighted regression (GWR) approach to obtain local 

coefficients (Brunsdon et al. 1996; Brunsdon et al. 1998; Fotheringham et al. 2002). It should allow us to uncover 

each county’s innovation strengths and weaknesses and suggest place-tailored innovation policies (Fritsch and 

Stephan 2005; Stough 2003). 

However one should not expect the role of every knowledge input variable to significantly vary spatially. If 

that is the case, then the results of GWR could lead to inefficient and incorrect conclusions (Wei and Qi 2012). As 

such we examine the degree of spatial stationarity in the marginal effects of input variables and compare the result 

of GWR with those of Mixed Geographically Weighted Regression (MGWR) (Fotheringham et al. 2002). GWR or 

MGWR are not widely used in the knowledge production function literature. We attribute it to the fact that most of 
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the attention has focused on modeling the mechanisms of spatial knowledge spillovers (for the overview on spatial 

modeling of knowledge spillovers, see Autant-Bernard 2012). In addition, the collinearity problem of GWR that 

makes this technique inapplicable to small sample of less than 400 observations (Bárcena et al. 2014; Paez et al. 

2011; Wheeler and Tiefelsdorf 2005) is inconvenient for the states or Metropolitan Statistical Areas (MSA) level 

data usually used in regional knowledge production functions (Anselin et al. 2000; Ó hUallacháin and Leslie 2007; 

Peri 2005). 

Given the aforementioned background, this paper explores the spatial heterogeneity in the mechanisms of 

regional knowledge creation across 3,109 continental US counties. As a smaller observation unit than states or MSA, 

counties allow us to provide more details about spatial variations in the US knowledge creation mechanism, as well 

as to adopt the GWR approach. Our large sample also helps us not to disregard non-metropolitan counties of which 

innovative capacity is admittedly lower than their metropolitan counterparts but certainly not negligible. The rest of 

the paper is composed as follows: Section 2 reviews the theoretical literature pinpointing the sources of spatial 

heterogeneity and lists the ways it has been modeled previously. Section 3 describes our knowledge production 

function and the relevant data. The calibration methods of GWR and MGWR are also explained in this section. The 

results and their interpretation appear in Section 4 while the last section closes the paper with some concluding 

remarks. 

 

2 Literature review 

2.1 Sources of spatial heterogeneity in knowledge creation and innovation 

Firms, universities and government agencies are the main actors of knowledge creation and innovation. As 

such the individual capacity of these agents is an important determinant of knowledge creation in the region they 

belong to. Yet the region’s characteristics constituted by interactions between the agents are also highly relevant to 

intra-regional innovation outputs (Döring and Schnellenbach 2006; Harris 2011). For instance, Marshall (1920) 

points out that socio-cultural and institutional assets such as collective identity and expertise develop gradually 

within an industrial district and its “industrial atmosphere” is critical to facilitating localized knowledge spillovers 

and the creation of innovation. The literature of collective learning (Camagni 1991; Lazaric and Lorenz 1998; 

Lorenz 1992) also emphasizes the role of regional “innovative milieus” in promoting regional learning and 

innovation. Local cultural and institutional rules and civic engagement facilitate collaborations between firms 

thereby contributing to stronger intra-regional trust, inter-firm networking (Keeble et al. 1999) and a greater 

innovative capacity at the regional level (Storper 1997).  

Similar ideas are found in the literature of learning region (Asheim 1996; Florida 1995; Morgan 1997; 

Simmie 2011; Storper 1993). In the knowledge-based economy, global companies depend on their home regions’ 

local knowledge assets and infrastructures which are subject to region-specific institutional and cultural norms 

(Florida 1995). As such, the regional learning process of generating and transferring knowledge is affected by local 

social capital, i.e. the institutional and cultural context of local networks, trust and conventions (Asheim 1996; 

Morgan 1997; Storper 1993). Studies on regional innovation system have also highlighted the critical role of 
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institutional infrastructures on intra-regional innovative activities (Asheim and Isaksen 2002; Asheim and Gertler 

2006; Cooke et al. 1997; Oughton et al. 2002). Since these institutional infrastructures have evolutionary properties 

and path dependence (Asheim and Gertler 2006; David 1994; Zysman 1994), their regional characteristics are 

different across regions (Simmie 2011). Therefore, heterogeneous region-specific conditions are a source of spatial 

heterogeneity in intra-regional knowledge creation. 

In addition, heterogeneous region-specific conditions are related with the regional capacity of exploiting 

external knowledge sources. Firms can exploit benefits of knowledge spillovers not only from their local knowledge 

pool but also from distant external sources (Asheim and Isaksen 2002; Gertler and Levitte 2005; Rosenkopf and 

Almeida 2003; Trippl et al. 2009) and each region has its own capacity to absorb knowledge created elsewhere 

(Cohen and Levinthal 1990) as it depends on the unique combination of the ability of local individual agents 

(Mukherji and Silberman 2013). Verspagen and Schoenmakers (2004) demonstrate that this capacity is proportional 

to the existing stock of local knowledge while Döring and Schnellenbach (2006) and Agrawal et al. (2010) show that 

it is also depends on the locality’s institutions, sectoral structure and historical similarity with its partners. As such 

heterogeneous regional characteristics lead to a spatially heterogeneous capacity to exploit external knowledge 

sources. 

 

2.2 Modeling spatial heterogeneity in the empirical studies of knowledge production function 

Various approaches have been used in the literature to model spatial heterogeneity in the regional 

innovation dynamics. The most common approach relies on capturing a set of control variables of which values 

differ by region. Since the contribution of Jaffe (1989), geographically-aggregated R&D expenditures and human 

capital are commonly used in regional knowledge production functions (Acs et al. 2002; Bode 2004; Parent and 

LeSage 2008). An index of specialization or diversity is also commonly found (Feldman and Audretsch 1999; Ó 

hUallacháin and Leslie 2007; Parent and LeSage 2008) and the sign of its associated estimates helps researchers 

concludes on whether Marshall-Arrow-Romer (Arrow 1962; Marshall 1920; Romer 1986) or Jacobian externalities 

(Jacobs 1969) drive regional innovation the most as both matter theoretically (Fung and Chow 2002; Glaeser et al. 

1992; Henderson 2003; Jaffe 1986). In addition, Anselin et al. (1997) and Bode (2004) propose to control for the 

share of small firms since they have a comparative advantage in exploiting knowledge generated from university 

laboratories (Acs et al. 1994). On the other hand, large firms have a greater impact on the local labor market (Acs 

and Armington 2004), thus their contribution to agglomeration effects and consequently to knowledge creation 

could be greater than small firms. As such, the relative presence of large or small firms needs to be accounted for to 

shed some light on its net effect on regional knowledge creation.  

The recent contributions of Mukherji and Silberman (2013) and Capello and Lenzi (2014) focus on the 

regional entrepreneurship culture and social capital respectively due to their role on the local absorptive capacity. In 

the absence of actual measurement of these regional characteristics, the level of entrepreneurship is proxied by the 

self-employment rate, the rate of firm birth and deaths and the share of employment in young firms. Following the 

innovative milieus theory (Camagni 1991; Lazaric and Lorenz 1998; Lorenz 1992), the level of trust, cooperation 
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and collective actions within a region are used as a measure of social capital. In addition, several studies attempt to 

measure the level of intra-regional knowledge spillovers directly. Jaffe (1989) uses the geographical coincidence of 

university and commercial R&D laboratories within a US state, while Kang and Dall’erba (2015) rely on intra-

regional patent citation flows at the county level. 

An increasing number of spatial econometric studies incorporate interregional knowledge spillovers to deal 

with the spatial dependence and heterogeneity inherent in regional knowledge creation and innovation (Autant-

Bernard 2012). In order to model spillovers capturing the diffusion of tacit knowledge due to face-to-face 

interactions, many studies rely on knowledge created within a distance cut-off or among physically contiguous 

neighboring regions (Anselin et al. 1997; Anselin et al. 2000; Autant-Bernard and LeSage 2011; Bode 2004). In 

addition, several studies examine the role of interregional knowledge spillovers taking place over long distance 

through channels such as technological proximity (Fischer et al. 2006; Maggioni et al. 2010; Maurseth and 

Verspagen 2002). Peri (2005) uses a matrix of interregional patent creation-citation flows in Western Europe and 

North America. Ponds et al. (2010) model the spillovers across Dutch regions based on research collaboration 

between universities and firms. 

As an alternative way to model the spatial heterogeneity of the innovation activities, random and fixed 

effects are also introduced. For instance, in the framework of a spatial interaction model, Fischer et al. (2006) adopt 

heteroskedastic error terms assumed to reflect heterogeneous knowledge flows. Parent and LeSage (2008) choose to 

model spatially structured random effects assumed to reflect interregional knowledge spillovers in conjunction with 

non-spatially structured heteroskedastic variance terms. Mukherji and Silberman (2013) focus on a region’s 

absorptive capacity that they model through destination fixed-effect coefficients in the frame of a spatial interaction 

model. The estimated regional absorptive capacity is then used to explain innovation productivity. 

However, the aforementioned modeling approaches presume that the average marginal impacts of the 

knowledge input factors are spatially homogenous. Since spatially heterogeneous regional characteristics affecting 

regional innovation activities are hard to control perfectly, local marginal impacts of knowledge inputs would reflect 

the relevant influence of regional characteristics. Therefore, the assumption of homogeneous parameters over space 

in the empirical model of knowledge production function may be too restrictive, thereby leading to locally biased 

misspecification (McMillen and Redfearn 2010). As a result, this paper adopts GWR and MGWR approaches to 

explore spatial heterogeneity in the marginal effects of the knowledge input variables.  

 

3 Model and data 

3.1 Regional knowledge production function 

The prevalent knowledge production function at the firm level is a Cobb-Douglas function as in Griliches 

(1979). It proposes the innovation output to be associated to the knowledge stock and human capital inputs 

(Audretsch and Feldman 2004). At the regional level, the conceptual framework expands the firm level approach by 

aggregating geographically the knowledge stock and human capital level (Acs et al. 2002; Bode 2004; Jaffe 1989). 

In addition, several region-specific conditions can be included in the regional model as described in the previous 
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section. Among them, we select a set of variables that can be measured for our observation units, i.e. the 3,109 

continental US counties, and build on recent efforts to separate clearly intra-regional spillovers (Kang and Dall’erba, 

2015) from local spillovers (Anselin et al. 1997; Bode 2004) and long distance spillovers (Peri 2005; Ponds et al. 

2010). Eq. (1) presents our empirical model of regional knowledge production of which variables have been chosen 

based on past literature (see section 2) and the authors’ previous work (Kang and Dall’erba, 2015).  

 

𝑙𝑛𝑷𝒂𝒕𝒆𝒏𝒕𝒊 = 𝛽0 + 𝛽1𝑙𝑛𝑷𝒓𝒊𝒗𝒂𝒕𝒆𝒊 + 𝛽2𝑙𝑛𝑼𝒏𝒊𝒗𝒊 + 𝛽3𝑙𝑛𝑮𝒓𝒂𝒅𝒖𝒂𝒕𝒆𝒊 + 𝛽4𝑙𝑛𝑫𝒊𝒗𝒆𝒓𝒔𝒊𝒕𝒚𝒊 + 𝛽5𝑙𝑛𝑳𝒂𝒓𝒈𝒆𝒊 +

𝛽6𝑙𝑛𝑰𝒏𝒕𝒓𝒂𝒊 + 𝛽7 ln 𝑳𝒐𝒄𝒂𝒍. 𝑷𝒓𝒊𝒗𝒂𝒕𝒆𝒊 + 𝛽8 ln 𝑳𝒐𝒄𝒂𝒍. 𝑼𝒏𝒊𝒗𝒊 + 𝛽9𝑙𝑛𝑫𝒊𝒔𝒕𝒂𝒏𝒕. 𝑷𝒓𝒊𝒗𝒂𝒕𝒆𝒊 +

𝛽10𝑙𝑛𝑫𝒊𝒔𝒕𝒂𝒏𝒕. 𝑼𝒏𝒊𝒗𝒊 + 𝛽11𝑙𝑛𝑺𝒊𝒛𝒆𝒊+𝜀𝑖         (1) 

 

The knowledge output is measured using the average of total patent applications over 2003-2005 by county 

(Patent). The patent data comes from the US Patent and Trade Office (USPTO 2010). The inventor’s address is used 

to assign patent data to US counties of the 2000 US Census using the fractional county method as in Jaffe et al. 

(1993). For example, when N inventors apply for a patent together, it is assumed that 1/N faction of the patent is 

attributed to each inventor. Then each 1/N fractional patent is geocoded to the US counties corresponding to the 

address of the inventors. The regional knowledge stock in private sector (Private) is approximated by the discounted 

sum of the companies’ R&D expenditures over 1995-2002 (measured in 2003 constant dollars using the Producer 

Price Index of the US Bureau of Labor Statistics). It is calculated using the perpetual inventory method on the lag 

polynomials of the R&D expenditures (Griliches 1992) coupled with a 15% annual depreciation rate. Data comes 

from Standard and Poor’s COMPUSTAT database (Standard & Poor’s 2011). The address of the companies is used 

for allocating the R&D expenditures across counties. We create the stock of knowledge in the academic sector (Univ) 

by the same method as Private. It is based on the academic R&D expenditures found in the NSF Survey of R&D 

expenditures at universities and colleges (National Center for Science and Engineering Statistics 2013). 

In order to measure the regional level of human capital (Graduate), we rely on the share of Graduate or 

professional degree holders 25 years old and over. The data comes from the 2000 US Census. In addition, we 

control for several regional economic conditions. As a relative diversity index of the regional industrial structure 

(Diversity), we use the index of Duranton and Puga (2000) as in Eq. (2) where 𝑆𝑖𝑗  is the share of industry j’s 

employment in county i and 𝑆𝑗 represents the share of national employment in industry j. The relevant data is based 

on the 13 industry system of the 2000 US Census. 

 

𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦𝑖 = 1/∑ |𝑠𝑖𝑗 − 𝑠𝑗|𝑗       (2) 

 

The share of large firms with 500 employees or more (Large) is measured to evaluate the influence of the 

composition of firm sizes in the regional economy. Its data comes from the 2000 County Business Patterns. As a 

control variable for the differences in regional economic size, the total number of employment in a county (Size) is 

included in the estimation model. The data comes from the 2000 US Census. 
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For the modeling of intra- and inter-regional knowledge spillovers, we rely on the patent creation-citation 

flows as seen in the spatial interaction modeling literature (Fischer et al. 2006; Maggioni et al. 2010). By 

constructing a matrix of patent citation patterns across regions, we can track the interregional knowledge spillovers 

(Fischer et al. 2006). In order to make a matrix of the patent creation-citation flows across our 3,109 counties, we 

use the patent citation records over 1995-1999 from the NBER US Patent Citation Data File (Hall et al. 2001). The 

patent citation flows are constructed using the same geocoding process as for the dependent variable. For example, 

when O investors create patent A and the patent is cited by patent B generated by D inventors, we assume that there 

are (O×D) knowledge flows from patent A to patent B. In addition, each flow is expected to capture a fraction 

1/(O×D) of the knowledge diffused from the counties of the cited patent inventors (origin counties) to the counties 

of the citing patent inventors (destination counties). Finally, we aggregate the fractional knowledge flows between 

counties to construct a (3,109×3,109) patent citation flow matrix. We call it the P matrix and the column-

standardized P matrix is used to define the variables of interregional spillovers. However, we intentionally separate 

the interregional spillovers into two categories. Based on the US daily commuting patterns (Smallen 2004) and 

following Anselin et al. (1997), Acs et al. (2002) and Mukherji and Silberman (2013), we use 50 miles as the 

distance cut-offs delimiting local spillovers. Spillovers over this distance cut-off are qualified as long-distance 

spillovers. Both are defined further below. In order to assess the robustness of our results, the distance cut-off of 75 

miles will be examined also. 

As a result, the localized interregional knowledge spillovers from the private sector (Local.Private) are 

approximated by the weighted sum of the private R&D expenditures of neighboring counties within 50 miles (or 75 

miles) as in Eq. (3) where 𝑃𝑖𝑗  is the (𝑖𝑡ℎ, 𝑗𝑡ℎ) element of the P matrix and represents the citation flows from county j 

to county i. Using the column-standardized P matrix, the variable is interpreted as the aggregated knowledge 

diffused from external knowledge sources. With the same idea but a cut-off of 50 miles (or 75 miles) at least, the 

distant interregional knowledge spillovers from the private sector (Distant.Private) are defined as in Eq. (4). The 

localized and distant interregional spillovers from the academic sector (Local.Univ and Distant.Univ) are defined 

based on Eqs. (3) and (4) respectively but by using the academic knowledge stock.  

 

𝐿𝑜𝑐𝑎𝑙. 𝑃𝑟𝑖𝑣𝑎𝑡𝑒𝑖 = ∑
𝑃𝑖𝑗

∑ 𝑃𝑖𝑗𝑖
𝑗≠𝑖 ⋅ 𝑃𝑟𝑖𝑣𝑎𝑡𝑒𝑗 ⋅ 1(𝑑(𝑖, 𝑗) ≤ 50 𝑚𝑖𝑙𝑒𝑠)   (3) 

𝐷𝑖𝑠𝑡𝑎𝑛𝑡. 𝑃𝑟𝑖𝑣𝑎𝑡𝑒𝑖 = ∑
𝑃𝑖𝑗

∑ 𝑃𝑖𝑗𝑖
𝑗≠𝑖 ⋅ 𝑃𝑟𝑖𝑣𝑎𝑡𝑒𝑗 ⋅ 1(𝑑(𝑖, 𝑗) > 50 𝑚𝑖𝑙𝑒𝑠)   (4) 

 

Finally, the level of intra-regional knowledge spillovers (Intra) is approximated by the share of regional 

self-citation flows within the same county (𝐼𝑛𝑡𝑟𝑎𝑖 = 𝑃𝑖𝑖/∑ 𝑃𝑟𝑖  𝑟 ). 𝑃𝑟𝑖  is the (𝑟𝑡ℎ , 𝑖𝑡ℎ) element of the (3,109×3,109) 

P matrix. Table 1 presents the list of these variables as well as their descriptive statistics. Since the metropolitan 

areas play a significant role in knowledge production and associated spillovers (Feldman and Audretsch 1999; 

Fischer et al. 2001), we assume the data generating process in the MSAs is different from that of the non-MSAs 

(Partridge et al. 2008). In addition, Kang and Dall’erba (2015) discover a significant structural difference in the 
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knowledge production process across metropolitan and non-metropolitan counties. As such, we separate the samples 

of metropolitan (853 counties) and non-metropolitan counties (2,256 counties) based on the definition of 

Metropolitan Statistical Areas found in the 2000 US Census. However, the variables of localized and distant 

knowledge spillovers are calculated using all counties since spillovers do not take place only between metropolitan 

counties and vice versa. Table 1 indicates that, for all variables, the MSA counties display a much greater mean and 

median values than non-MSA counties. The column “Zeros” reports the number of counties with a zero value for 

each variable. Due to the presence of zeros in most variables, we added one to each of them before log 

transformation. 

 

[Table 1] 

 

3.2 Calibration of GWR and Mixed GWR 

We start exploring the spatial heterogeneity in the knowledge production process across counties by relying 

on a GWR approach. A basic GWR model is expressed as Eq. (5) where 𝑦𝑖 and 𝑥𝑖𝑘 are the dependent and the k
th

 

explanatory variables respectively, (𝑢𝑖, 𝑣𝑖) denotes the geographical coordinates of the centroid of county i and 

𝛽𝑘(𝑢𝑖 , 𝑣𝑖) is the k
th

 local coefficient at county i (Fotheringham et al. 2002). Eq. (6) presents the vector of GWR local 

estimates at county i. In the equation, 𝒀 is the vector of the dependent variable and 𝑿 is the matrix of explanatory 

variables including the intercept. 𝑾(𝑢𝑖, 𝑣𝑖)  is the diagonal matrix of 𝑑𝑖𝑎𝑔(𝑤𝑖1, 𝑤𝑖2 , ⋯ , 𝑤𝑖𝑛)  and each weight 

element 𝑤𝑖𝑗  represents the adjacency effects of neighboring counties to county i (Partridge et al. 2008). Various 

kernel functions can be used to define the weight element. In order to choose the best kernel function, we compare 

the model fits of GWR and of MGWR with four different kernel functions: Gaussian, Exponential, Bisquare and 

Tricube (Eqs. 7-10).
1
 In the kernel functions, 𝑏 denotes the kernel bandwidth and 𝑑𝑖𝑗  is the great circle distance 

between the centroids of counties i and j. Since the distribution of the observations is not uniform, we use an 

adaptive bandwidth defined as a fixed number of nearest neighbors (Fotheringham et al. 2002). 

 

𝑦𝑖 = 𝛽0(𝑢𝑖, 𝑣𝑖) + ∑ 𝛽𝑘(𝑢𝑖, 𝑣𝑖)𝑥𝑖𝑘𝑘 + 𝜀𝑖        (5) 

�̂�(𝑢𝑖 , 𝑣𝑖) = [𝑿′𝑾(𝑢𝑖 , 𝑣𝑖)𝑿]−1𝑿′𝑾(𝑢𝑖, 𝑣𝑖)𝒀       (6) 

𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛: 𝑤𝑖𝑗 = exp [−
1

2
(

𝑑𝑖𝑗

𝑏
)

2

]  𝑖𝑓 𝑑𝑖𝑗 < 𝑏 𝑎𝑛𝑑 𝑤𝑖𝑗 = 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    (7) 

𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙: 𝑤𝑖𝑗 = exp [−
|𝑑𝑖𝑗|

𝑏
]  𝑖𝑓 𝑑𝑖𝑗 < 𝑏 𝑎𝑛𝑑 𝑤𝑖𝑗 = 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    (8) 

𝐵𝑖𝑠𝑞𝑢𝑎𝑟𝑒: 𝑤𝑖𝑗 = (1 − (
𝑑𝑖𝑗

𝑏
)

2

)
2

 𝑖𝑓 𝑑𝑖𝑗 < 𝑏 𝑎𝑛𝑑 𝑤𝑖𝑗 = 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    (9) 

𝑇𝑟𝑖𝑐𝑢𝑏𝑒: 𝑤𝑖𝑗 = (1 − (
𝑑𝑖𝑗

𝑏
)

3

)
3

 𝑖𝑓 𝑑𝑖𝑗 < 𝑏 𝑎𝑛𝑑 𝑤𝑖𝑗 = 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    (10) 
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In order to choose the optimal kernel bandwidth, one can rely on the cross-validation (CV) score (Bowman 

1984; Cleveland 1979) or the Akaike Information Criterion (AIC). However, the former option is known for two 

shortcomings. First, it only considers model prediction accuracy (Lu et al. 2014a); second, several studies show that 

it returns a too small optimal bandwidth (McMillen 2010) which may lead to extreme coefficients (Farber and Páez 

2007). On the other hand, AIC accounts for a trade-off between model complexity and prediction accuracy and it 

can be used to compare the goodness-of-fit of a GWR model with the one of a global model (Fotheringham et al. 

2002). For these reasons, we adopt it and rely on its corrected version (AICc) with respect to the effective degree of 

freedom in a GWR model (Hurvich et al. 1998). The optimal bandwidth is the one that minimizes AICc as described 

in Eq. (11) where n is the number of observations, �̂� is the estimated standard deviation of the error term and 𝑡𝑟(𝑺) 

is the trace of the hat matrix 𝑺 (Eq. 12). The vector 𝑿𝒊 of the hat matrix is the i
th

 row of the explanatory variable 

matrix 𝑿. 

 

𝐴𝐼𝐶𝑐 = 2 ⋅ 𝑛 ⋅ 𝑙𝑛(�̂�) + 𝑛 ⋅ ln(2𝜋) + 𝑛 ⋅ {
𝑛+𝑡𝑟(𝑺)

𝑛−2−𝑡𝑟(𝑺)
}      (11) 

𝑺 =

[
 
 
 
𝑿𝟏

′ [𝑿′𝑾(𝑢1, 𝑣1)𝑿]−1𝑿′𝑾(𝑢1, 𝑣1)

𝑿𝟐
′ [𝑿′𝑾(𝑢2, 𝑣2)𝑿]−1𝑿′𝑾(𝑢2, 𝑣2)

⋮
𝑿𝒏

′ [𝑿′𝑾(𝑢𝑛, 𝑣𝑛)𝑿]−1𝑿′𝑾(𝑢𝑛 , 𝑣𝑛)]
 
 
 
        (12) 

 

The GWR calibration allows us to explore the non-stationarity of every coefficient. However, some of them 

may not vary significantly over space. As a result, we use a Monte Carlo random permutation test (Brunsdon et al. 

1998) to identify what factors do not vary spatially. This step is necessary before we calibrate a MGWR model (Eq. 

13) in which some coefficients are global and the remaining ones are local. We follow the procedure proposed in 

Fotheringham et al. (2002, pp. 65-68) where 𝑿𝑮 denotes the matrix of explanatory variables with stationary 

coefficients and 𝑿𝑳 is its counterpart for non-stationary coefficients: 1) regress each explanatory variable of 𝑿𝑮 on 

𝑿𝑳 using a basic GWR and compute the residuals; 2) regress 𝒚 on 𝑿𝑳 using a basic GWR and compute the residuals; 

3) regress the 𝒚-residuals of step 2 on the 𝑿𝑮-residuals of step 1 using OLS. The OLS coefficients of this regression 

are a vector of global coefficients 𝜷�̂�; 4) regress (𝒚 − 𝑿𝑮𝜷�̂�) on 𝑿𝑳 using a basic GWR. The GWR coefficients of 

this regression are the local MGWR coefficients 𝜷�̂�(𝑢𝑖 , 𝑣𝑖). Calibrated global and local coefficients are expressed as 

Eqs. (14) and (15) respectively where 𝑺𝑳 is the hat matrix composed of 𝑿𝑳 and I is the compatible identity matrix. 

 

 𝑦𝑖 = ∑ 𝛽𝑘,𝐺𝑥𝑖𝑘,𝐺
𝑞
𝑘=1 + ∑ 𝛽𝑘,𝐿(𝑢𝑖 , 𝑣𝑖)𝑥𝑖𝑘,𝐿

𝐾
𝑘=𝑞+1  + 𝜀𝑖       (13) 

𝜷�̂� = [𝑿𝑮
′ (𝑰 − 𝑺𝑳)

′(𝑰 − 𝑺𝑳)𝑿𝑮]−1𝑿𝑮
′ (𝑰 − 𝑺𝑳)(𝑰 − 𝑺𝑳)𝒀     (14) 

𝜷�̂�(𝑢𝑖 , 𝑣𝑖) = [𝑿𝑳
′ 𝑾(𝑢𝑖, 𝑣𝑖)𝑿𝑳]

−1𝑿𝑳
′ 𝑾(𝑢𝑖 , 𝑣𝑖)(𝒀 − 𝑿𝑮𝜷�̂�)     (15) 

 

 

4 Calibration results 
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Tables 2 and 3 present the model fit for the kernel functions described above for the MSA and the non-

MSA data. Since the Gaussian kernel returns the lowest AICc values of MGWR for both distance cut-offs and 

MSA/non-MSA data, we will present the calibration results based on the Gaussian kernel throughout the rest of this 

paper
2
. Table 4 shows the result of the spatial stationarity test for both the MSA/non-MSA and the 50/75 miles 

distance cut-offs. The large majority of our coefficients vary spatially at the 5% significance level, which confirms 

the need to adopt a GWR approach. 

 

[Table 2] 

[Table 3] 

[Table 4] 

 

For the MSA counties, the GWR and MGWR calibration results are reported in Tables 5 and 6. Despite 

different spatial extents of localized spillovers (50 miles for Table 5, 75 miles for Table 6), the estimates of the 

models and the chosen optimal bandwidths are very similar to each other. Since the model fit of MGWR with 75 

miles distance cut-off is better in terms of AICc, we focus our interpretation of the results on Table 6. 

 

[Table 5] 

[Table 6] 

 

Model 4 of Table 6 shows the OLS results for the sample of 853 MSA counties as the baseline global 

model. In the model, the columns “2.5%” and “97.5%” denote the lower and upper bounds of the 95% confidence 

intervals for the estimated coefficients. The estimates show that both the private and the academic knowledge stocks 

have a significant and positive influence on knowledge creation across MSA counties although the former has a 

magnitude about 3 times greater than the latter. It is clear that among all our variables, human capital plays the 

greatest role on knowledge creation. Sectoral diversity and the share of large firms do not have a significant impact 

on knowledge creation while the size of the local labor force does. It is different from the knowledge spillovers 

where, with the exception of the localized spillovers of academic knowledge, all types show a significant and 

positive role. The distant interregional spillovers display a greater elasticity than the local ones. This result is 

consistent with the previous studies emphasizing the importance of distant knowledge spillovers (Asheim and 

Isaksen 2002; Gertler and Levitte 2005; Trippl et al. 2009). 

Model 5 presents the calibration results of GWR. The chosen optimal adaptive bandwidth of the model is 

61 nearest neighboring counties. With respect to the adjusted R
2
 and the Residual Sums of Squares (RSS), the GWR 

results show better goodness-of-fits than the OLS model. In addition, the AICc of GWR is smaller and the 

difference in AICc between Models 4 and 5 are much greater than 3, the rule of thumb brought to the fore by 

Fotheringham et al. (2002, p.96) for model selection. Although the GWR model fits the MSA sample better than the 

OLS model, the median values of the GWR coefficients are generally close to the OLS estimates, especially for the 

significant ones. In addition, the 95% confidence intervals of the OLS estimates overlap the intervals of the first and 
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third quartiles of the GWR coefficients. However, we note that the ranges of the minimum and maximum 

coefficients of the GWR are much wider than the OLS confidence intervals. Even though all the GWR coefficients 

show spatially varying patterns across MSA counties, the Monte Carlo test based on 499 random permutations 

(Brunsdon et al. 1998) does not reject the hypothesis of spatially stationary coefficients at the 5% significance level 

for the following variables: private knowledge stock, human capital level, intra-regional spillovers, local and distant 

spillovers of academic knowledge.  

As such we turn to the MGWR coefficients which are reported in Model 6. The chosen optimal bandwidth 

in the first and second steps of the MGWR procedure (see the previous section) is 61 and the one for the fourth step 

is 54. Although the difference in the AICc values between MGWR and GWR is less than 3, the former has a smaller 

AICc value (in the case of 50 miles distance cut-off, the difference in the AICc is about 6 which confirms that 

MGWR is a better model, see Table 5). In order to test the significance level of the global explanatory variables, we 

adopt the F-approximation suggested by Mei et al. (2006). We find that such coefficients are significant at the 1% 

level and generally closer to the corresponding GWR median values than to the OLS estimates. In addition, the local 

spillovers of academic knowledge which are not significant in the OLS model show a significant and positive global 

impact on knowledge creation now. Considering that many previous studies support the significant role of such 

spillovers (Acs et al. 1994; Audretsch and Feldman 1996; Jaffe 1989; Ó hUallacháin and Leslie 2007), our MGWR 

results suggest that the role of significant factors can be concealed when spatial heterogeneity is not sufficiently 

controlled for in a global model. 

For the local MGWR coefficients, we find that their median, first and third quartiles are generally close to 

those of the GWR model. When we focus on the intervals of the first and third quartiles, most local coefficients 

present a consistent sign. The exceptions are the diversity index and the share of large firms. This result is not 

necessarily surprising considering that the literature has not reached a consensus on the relative importance of 

specialization vs. diversity (Fung and Chow 2002; Glaeser et al. 1992; Henderson 2003; Jaffe 1986) and on the role 

of small vs. large firms (Acs and Armington 2004; Anselin et al. 1997) on knowledge creation. It could be that the 

relative role of diversity and small firms is subject to heterogeneous regional conditions such as institutional 

infrastructures and social assets so that their spatially varying elasticity is to be expected. 

Our results also indicate a non-stationary elasticity associated to both local and distant private knowledge 

spillovers. Since a region’s absorptive capacity to utilize external knowledge sources is determined by the 

combination of the local agents’ innovation ability, regional knowledge stocks (Mukherji and Silberman 2013; 

Verspagen and Schoenmakers 2004), learning cost (Cohen and Levinthal 1990) and region-specific conditions such 

as institutions, industrial structure and historical similarity (Agrawal et al. 2010; Döring and Schnellenbach 2006), 

each MSA county is expected to display a different level of regional absorptive capacity. Figs. 1 and 2 display the 

geographical distribution of the MGWR coefficients of local and distant private knowledge spillovers respectively. 

Because statistical inference on the local MGWR coefficients is based on 853 multiple hypotheses, we calculate the 

Bonferroni style adjusted t-value following the Fotheringham-Byrne procedure (Byrne et al. 2009) and report only 

the coefficients significant at 5% in our figures. As shown in Fig. 1, we find that the significant impact of localized 

private knowledge spillovers is concentrated in the central and eastern MSAs of the country with the largest values 
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found in Texas and several Southeastern states. Fig. 2 displays the MSA counties’ elasticity of distant spillovers of 

private knowledge. Their largest value appears in the Western and Northeastern states. Many Texas counties that 

display a large impact of local spillovers do not show any significant role for the distant ones. The opposite holds 

true for California, Washington, Massachusetts, New Jersey and Connecticut. 

The relative importance of the local buzz and global pipeline on regional innovation may explain this 

distinct geographical distribution of the spillover coefficients (Feldman and Kogler 2010; Moreno and Miguélez 

2012). As many empirical studies point out (Asheim and Isaksen 2002; Gertler and Levitte 2005; Trippl et al. 2009), 

firms in one location can benefit from distant but highly relevant external knowledge sources as well as from local 

knowledge pools. We believe it is the case of many central MSA counties that display significant local coefficients 

for both localized and distant private knowledge spillovers. At the same time, some very innovative regions play a 

critical role in local knowledge creation but do not benefit much from their direct neighbors. Instead, they rely on 

distant collaborators connected with through global pipelines. Many counties in California, Washington, 

Massachusetts and New Jersey correspond to the previous case: as Fig. 3 indicates, they are the most innovative 

MSA counties, yet their MGWR coefficients of local private knowledge spillovers are not significant. Instead, the 

role of distant spillovers for these counties is not only significant but also greater than anywhere else. On the other 

hand, in many highly innovative counties of Texas (see Fig. 3) the significant spillovers are local only. It might be 

related to the composition of the innovative industry in this region: Texas is specialized in Computers and 

Semiconductors (Audretsch and Feldman 1996) whereas the aforementioned innovative states are leading regions 

across various innovative industries. For instance, the average of relative diversity index (Diversity) of the Texas 

MSA counties is 4.79. It is 4.83, 4.98, 5.03, 5.41 and 5.65 in the MSA counties of Massachusetts, California, New 

Jersey, Washington and Connecticut respectively. In addition, Anselin et al. (2000) show that Machinery (SIC 35) 

and Electronics (SIC 36) sectors which include Computers and Semiconductors experience significant local 

knowledge spillovers but their estimates are not measured with the presence of long-distance spillovers. Hence a 

sectoral analysis combining both types of spillovers would shed new light into the dichotomy found here. This is left 

for future research. 

 

[Fig. 1] 

[Fig. 2] 

[Fig. 3] 

 

Tables 7 and 8 show the results for the sample of the 2,256 non-MSA counties with the 50 and 75 miles 

distance cut-offs respectively. The OLS results with 50 miles cut-off (Model 7) indicate that the private and 

academic knowledge stocks show a significant and positive role on knowledge creation. Human capital is the 

knowledge input variable with the largest elasticity. The index of diversity is still not significant while the share of 

large firms is significantly detrimental to the innovation output among non-MSA counties. All types of knowledge 

spillovers, including the localized academic spillovers, have a significant and positive impact now. The GWR results 

(Model 8) show a better goodness-of-fit than the OLS model with respect to the adjusted R
2
, RSS and AICc. As in 
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the MSA case, the median values of GWR coefficients are generally close to the OLS estimates so that the 95% 

confidence interval of the OLS estimates overlaps with the values of the first and third quartiles of the GWR 

coefficients. The Monte Carlo test based on 499 random permutations indicates that the hypothesis of stationary 

coefficients is not rejected at the 5% level for the following variables: academic knowledge stock, diversity and all 

types of intra- and interregional spillovers (see Table 4). As a result, the MGWR coefficients calibrated for the non-

MSA counties are reported in Model 9. The MGWR shows a better model goodness-of-fit than the GWR in terms of 

adjusted R
2
, RSS and AICc. All the global coefficients are significant at the 1% significant level based on the F-

approximation and their magnitudes are closer to the corresponding GWR median values than to the OLS estimates. 

For the local MGWR coefficients, their median, first and third quartiles are generally close to those of the GWR 

model and most of the local coefficients in the intervals of the first and third quartiles display a consistent sign.  

 

[Table 7] 

[Table 8] 

 

When the spatial extent of localized spillovers is extended up to 75 miles, the results of OLS (Model 10) 

and GWR (Model 11) are generally consistent with those based on 50 miles. However, the estimates associated to 

local academic spillovers and its relative role with respect to local private spillovers are greater in both the OLS and 

the GWR. We believe that since more than 90% of the non-MSA counties have zero values for the local academic 

spillovers (see Table 1), an increase in the spatial extent of spillovers leads to a sensitive change in the estimates 

than in the MSA case. Similarly, while the MGWR coefficients are generally not sensitive to a change in distance 

cut-off, we find some differences. For instance, in Model 12 local private spillovers and distant academic spillovers 

become spatially non-stationary compared to Model 9. Furthermore, the elasticity of local academic spillovers 

becomes greater than the one of the median local private spillovers in Model 12. Although the MGWR based on 75 

miles shows a better model fit than when based on 50 miles, we are cautious about the results since the model may 

be over-fitted. Indeed, in Fig. 4 that presents the geographical distribution of the MGWR coefficients of local private 

spillovers, one can observe that few are significant at the Bonferroni adjusted p-value of 5%. In addition, their 

calibrated elasticity is greater than 1 in several locations. We conjecture that the smaller optimal number of nearest 

neighbors based on 75 miles (31 neighbors) than in the case of 50 miles  (38 nearest neighbors) is the reason why we 

find these extreme coefficients (Farber and Páez 2007). 

 

[Fig. 4] 

 

5 Conclusion 

Since the contribution of Jaffe (1989), an increasing number of studies has relied on geographically 

aggregated units to understand the spatial dynamics of knowledge creation. This literature has built on theoretical 

and empirical advances in the geography of innovation (Anselin et al. 1997; Audretsch and Feldman 2004; Feldman 
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and Kogler 2010; Jaffe 1989) and has recognized the role of region-specific conditions such as the degree of 

diversity of its economy, human capital of the local workforce and the intra-regional and interregional knowledge 

spillovers. Since these regional conditions are heterogeneous over space, one should expect the regional mechanisms 

of knowledge creation to vary spatially as well. However, most empirical studies in the literature have relied on 

regression models that implicitly assume the elasticity of the knowledge inputs does not vary over space (Anselin et 

al. 1997; Jaffe 1989; Ó hUallacháin and Leslie 2007; Ponds et al. 2010). Such elasticity corresponds to the average 

impact of an input across the entire sample, which may mask a positive impact in some areas and a less positive or 

even negative one in other areas. As such it may lead to locally biased misspecifications (McMillen and Redfearn 

2010). In order to explore the spatial heterogeneity in the regional knowledge production functions of the US 

counties, this paper adopts the nonparametric local modeling approaches of GWR and MGWR. Yet another 

contribution compared to the existing literature consists in investigating the individual effect of private vs. academic 

knowledge stocks and of localized spillovers vs. distant knowledge spillovers. The latter are measured through a 

unique matrix of interregional patent creation-citation flows. 

Based on two distinct samples of MSA and non-MSA counties, the calibration results show that the role of 

most knowledge input variables varies over space but some display a spatially homogenous elasticity on regional 

knowledge creation. For the MSA sample, the MGWR calibrations uncover the significant but spatially homogenous 

role of local knowledge spillovers emanating from universities, a factor that is not statistically significant in the OLS 

model. Considering that the GWR approach partly accounts for county fixed effects by using the spatially varying 

constant coefficients (Partridge et al. 2008), these results support the idea that a significant factor can be concealed 

when spatial heterogeneity is not sufficiently controlled for in a global model. The local MGWR coefficients may 

show both positive and negative elasticities for the same variable, thus reflecting the spatial heterogeneity present in 

our data and model. It is the case for the index of industrial diversity, which does not come as a surprise considering 

that the relative importance of diversity (Jacobian externalities) vs. specialization (Marshall-Arrow-Romer 

externalities) is still debated in the literature in general (Fung and Chow 2002; Glaeser et al. 1992; Henderson 2003; 

Jaffe 1986) and is subject to the heterogeneous characteristics of our spatial observations in particular. We also find 

that the spillovers of private knowledge vary spatially especially in MSA counties (both locally and over long 

distances). It confirms our expectations about the dominance of and more complex innovation capacity of the MSA 

counties in the nation’s knowledge production. At the same time, localized academic spillovers are found to display 

spatially homogenous elasticities in both MSA and non-MSA counties. However, the spatial stationarity of the 

distant academic spillovers is sensitive to the distance cut-off (50 vs. 75 miles) in the case of the non-MSA. 

Our MGWR results suggest two policy implications. First, policy makers should pay more attention to the 

spatial heterogeneity present in the regional knowledge production process, especially across metropolitan regions. 

Recently Kang and Dall’erba (2015) finds that there are significant structural differences in the mechanisms of 

regional knowledge creation between MSA and non-MSA counties. The MGWR results provided here go one step 

further by highlighting the significant presence of heterogeneity at the county level. In particular, we find that the 

impact of sectoral diversity is not spatially homogenous across MSA counties. As such it would be fruitful to modify 

on-going debates about regional specialization vs. regional diversity (Fung and Chow 2002; Glaeser et al. 1992; 
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Henderson 2003; Jaffe 1986) to questions that embrace the naturally large differences in the regions’ characteristics 

such as “how can a region capitalize on its specific industrial and institutional structures to innovate and grow?” In 

addition, the returns of local and distant interregional spillovers of private knowledge show significant spatial 

variations, but the relative role of these two types of spillovers does not show similar patterns across MSA counties. 

Some innovative regions generate knowledge spillovers locally but they do not learn much from their geographical 

neighbors in return as their main knowledge partners are remotely located. On the other hand, other innovative 

regions depend on their local neighbors by a much greater extent. As such, regional policy makers need to identify 

which type of spillovers is the most beneficial to their local innovation process before they can figure out how to 

facilitate knowledge spillovers.  

Second, policy makers need to support academic knowledge spillovers at the national level. Our results 

show that the localized spillovers of academic knowledge generate spatially homogenous contributions to 

knowledge creation across both MSA and non-MSA counties. When we use a 50 miles distance cut-off, the distant 

spillovers of academic knowledge display spatially homogenous returns across both MSA and non-MSA counties as 

well. Considering that academic knowledge has the characteristics of a public good (Foray and Lissoni 2010), 

regions should have a relatively high capacity to absorb it even if they are short in human capital stock and cannot 

afford high learning cost (Liu 2013; Verspagen and Schoenmakers 2004). Therefore, the cost-efficiency of academic 

knowledge spillovers should be recognized and be supported for greater regional innovation. 

Although spatial heterogeneity is definitely an intrinsic component of knowledge creation, each industrial 

sector has distinctive innovation characteristics as reported in previous studies (Anselin et al. 2000; Mansfield 1995). 

We also cannot disregard the fact that the temporal aspect of innovation (LeSage and Sheng 2014; Parent 2012), 

especially in the form of path dependence, is a critical dimension to consider (David 1994). As such, our future 

research proposes to consider simultaneously the sectoral, spatial and temporal heterogeneities present in our data to 

deepen our understanding of the dynamics of knowledge creation and innovation across US counties. 

  

                                                           
1
 We thank an anonymous reviewer for suggesting us to try out various kernel functions and distance cut-offs in the 

definition of the spatial extent of localized spillovers in order to find the best model specification. 

2
 The GWR and MGWR calibration results with the other kernel functions are available upon request. 
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Table 1 Descriptive statistics 

    MSA county (853) Non-MSA county (2,256) 

Variable  Explanation  Mean Med. S.D. Min Max Zeros Mean Med. S.D. Min Max Zeros 

Patent  Total patents (fractional count)  150.9 22.4 494.3 0.0 9359.7 5 3.4 0.9 9.2 0.0 162.4 433 

Private  Private R&D (million dollars)  821.2 0.0 4909.4 0.0 99161.9 423 2.6 0.0 51.1 0.0 2097.0 2100 

Univ  Academic R&D (million dollars)  139.8 0.0 587.9 0.0 11826.9 569 3.8 0.0 52.1 0.0 1815.9 2154 

Graduate  Share of graduate degree holders (%)  5.1 4.4 2.8 1.2 25.2 0 3.1 2.7 1.4 0.5 14.7 0 

Diversity  Level of sectoral employment diversity  4.5 4.4 1.5 1.1 13.0 0 2.8 2.7 0.9 0.8 6.5 0 

Large  Share of large firms (employees > 499) (%)  8.4 8.0 3.1 1.1 40.0 0 7.7 7.6 3.4 0.0 26.2 35 

Intra  Share of intra-county citation (%)  11.9 10.5 11.7 0.0 100.0 164 5.3 0.0 14.5 0.0 100.0 1731 

Local.Private50  
Local private knowledge spillovers within 50 

miles  
82.1 0.2 440.7 0.0 7682.2 347 0.2 0.0 1.9 0.0 33.0 2045 

Local.Univ50  
Local academic knowledge spillovers within 

50 miles  
10.4 0.0 80.6 0.0 2226.7 422 0.1 0.0 1.0 0.0 20.6 2111 

Distant.Private50  
Distant private knowledge spillovers over 50 

miles  
554.3 95.4 1694.1 0.0 32228.3 27 13.4 0.8 38.3 0.0 594.3 911 

Distant.Univ50  
Distant academic knowledge spillovers over 

50 miles  
108.5 22.8 318.6 0.0 6093.9 35 3.2 0.1 9.6 0.0 163.5 987 

Local.Private75  
Local private knowledge spillovers within 75 

miles  
95.2 0.6 461.7 0.0 7791.7 297 0.5 0.0 3.9 0.0 110.2 1973 

Local.Univ75 
Local academic knowledge spillovers within 

75 miles  
11.9 0.1 81.8 0.0 2245.3 351 0.2 0.0 1.3 0.0 21.4 2037 

Distant.Private75  
Distant private knowledge spillovers over 75 

miles  
541.2 92.5 1671.7 0.0 31832.8 27 13.1 0.8 37.0 0.0 586.4 915 

Distant.Univ75  
Distant academic knowledge spillovers over 

75 miles  
107.0 22.6 317.3 0.0 6075.4 35 3.2 0.1 9.5 0.0 163.5 989 

Size  Total employees (thousand employees)  123.7 58.2 230.3 2.3 3953.4 0 10.4 7.3 10.0 0.0 83.7 1 

Note: The column Zeros means the number of counties of having zero values for each variable. 
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Table 2 Model fit by kernel function (MSA) 

    Distance cut-off: 50 miles Distance cut-off: 75 miles 

Model Model Fit statistic Gaussian Exponential Bisquare Tricube Gaussian Exponential Bisquare Tricube 

GWR Bandwidth 61 56 305 305 61 59 297 297 

 
Adjusted R

2
 0.934 0.932 0.934 0.933 0.935 0.933 0.935 0.934 

 
RSS 146.9 141.8 149.4 152.2 144.8 141.6 146.6 149.4 

  AICc 1120.0 1131.0 1123.6 1124.8 1107.9 1119.1 1112.2 1113.4 

MGWR 
Bandwidth 

(in 1st and 2nd steps) 
61 56 305 305 61 59 297 297 

 

Bandwidth 

(in 4th step) 
54 36 234 258 54 38 233 240 

 
Adjusted R

2
 0.933 0.930 0.933 0.933 0.933 0.932 0.933 0.933 

 
RSS 156.3 152.3 154.5 157.0 155.0 149.3 156.9 157.2 

  AICc 1113.8 1142.9 1114.9 1120.2 1106.9 1116.0 1110.9 1115.3 

Note: An adaptive bandwidth is used in the GWR and mixed GWR models. The bandwidths of the two models are chosen by minimizing the value of the 

corrected Akaike Information Criteria (AICc). RSS means Residual Sums of Squares. 

 

 

Table 3 Model fit by kernel function (non-MSA) 

    Distance cut-off: 50 miles Distance cut-off: 75 miles 

Model Model Fit statistic Gaussian Exponential Bisquare Tricube Gaussian Exponential Bisquare Tricube 

GWR Bandwidth 86 38 575 660 79 38 575 577 

 
Adjusted R2 0.729 0.742 0.727 0.724 0.736 0.747 0.731 0.730 

 
RSS 451.1 377.1 464.7 476.9 436.8 368.6 456.2 462.4 

  AICc 3084.3 3040.2 3097.6 3105.2 3039.5 2996.2 3057.0 3065.9 

MGWR 
Bandwidth 

(in 1st and 2nd steps) 
86 38 575 660 79 38 575 577 

 

Bandwidth 

(in 4th step) 
38 31 471 527 31 24 227 517 

 
Adjusted R2 0.732 0.727 0.725 0.724 0.747 0.741 0.735 0.728 

 
RSS 447.7 444.9 476.7 484.4 398.6 395.9 442.2 476.3 

  AICc 3057.9 3068.7 3083.9 3089.3 2987.1 2995.9 3042.6 3055.2 

Note: An adaptive bandwidth is used in the GWR and mixed GWR models. The bandwidths of the two models are chosen by minimizing the value of the 

corrected Akaike Information Criteria (AICc). RSS means Residual Sums of Squares. 
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Table 4 Non-stationarity Test (H0: spatially stationary coefficient, kernel function: Gaussian) 

 
MSA Non-MSA 

 

 

Distance cut-off: 

50 miles  

Distance cut-off: 

75 miles  

Distance cut-off: 

50 miles  

Distance cut-off: 

75 miles  

  P-value   P-value   P-value   P-value   

Intercept 0.018 L 0.040 L 0.014 L 0.036 L 

ln Private 0.186 
 

0.196 
 

0.018 L 0.020 L 

ln Univ 0.032 L 0.014 L 0.176 
 

0.140 
 

ln Graduate 0.100 
 

0.142 
 

0.006 L 0.002 L 

ln Diversity 0.000 L 0.000 L 0.072 
 

0.112 
 

ln Large 0.016 L 0.024 L 0.004 L 0.002 L 

ln Intra 0.226 
 

0.136 
 

0.976 
 

0.978 
 

ln Local.Private 0.018 L 0.002 L 0.066 
 

0.006 L 

ln Local.Univ 0.784 
 

0.206 
 

0.520 
 

0.354 
 

ln Distant.Private 0.004 L 0.008 L 0.328 
 

0.492 
 

ln Distant.Univ 0.414 
 

0.410 
 

0.168 
 

0.040 L 

ln Size 0.000 L 0.000 L 0.000 L 0.000 L 

Note: Non-stationary local GWR coefficients are tested using the Monte Carlo test based on 499 random permutations. L indicates that the local 

GWR coefficient is significant at the 5% level. 
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Table 5 Calibration results (MSA, distance cut-off: 50 miles) 

Dep. Variable: 

ln Patent 

Model 1 Model 2       Model 3 

 

    

OLS GWR 

   

  Mixed GWR 

     2.5% Estimate   97.5% Min. Q1 Median Q3 Max. Min. Q1 Median Q3 Max. 

Intercept -1.409 -1.001 *** -0.593 -3.168 -1.466 -1.139 -0.668 0.247 -2.472 -1.553 -1.174 -0.830 -0.215 

ln Private 0.041 0.061 *** 0.080 0.005 0.039 0.055 0.066 0.110 
  

0.044 *** 
 

ln Univ -0.002 0.017 * 0.036 -0.027 -0.002 0.016 0.034 0.081 -0.028 0.001 0.017 0.032 0.083 

ln Graduate 0.449 0.569 *** 0.688 0.299 0.577 0.694 0.781 1.060 
  

0.662 *** 
 

ln Diversity -0.167 -0.036 
 

0.094 -0.574 -0.288 -0.109 0.107 0.415 -0.523 -0.301 -0.083 0.140 0.351 

ln Large -0.169 -0.054   0.061 -0.410 -0.135 -0.049 0.070 0.444 -0.426 -0.112 -0.051 0.066 0.407 

ln Intra 0.003 0.038 ** 0.072 -0.083 0.011 0.028 0.055 0.145 
  

0.028 *** 
 

ln Local.Private50 0.086 0.115 *** 0.145 0.034 0.103 0.130 0.154 0.232 -0.004 0.100 0.142 0.167 0.240 

ln Local.Univ50 -0.048 -0.007 
 

0.035 -0.028 0.001 0.030 0.051 0.089 
  

0.029 *** 
 

ln Distnat.Private50 0.197 0.246 *** 0.296 0.119 0.157 0.203 0.293 0.428 0.094 0.165 0.216 0.269 0.505 

ln Distnat.Univ50 0.087 0.145 *** 0.203 0.022 0.060 0.087 0.138 0.269 
  

0.107 *** 
 

ln Size 0.338 0.400 *** 0.462 0.138 0.294 0.472 0.556 0.705 0.206 0.298 0.496 0.571 0.703 

Observations   853     853         853         

Adjusted R
2
 

 
0.918 

 
  0.934 

   
  0.933 

    

RSS 
 

210.17 
 

  146.89 
   

  156.26 
    

AICc   1252.23     
1119.9

9 
        

1113.7

6 
        

Kernel function 

   

  Gaussian 
  

  Gaussian 
   

Bandwidth         61         61 (in 1
st
 and 2

nd
 steps), 54 (in 4

th
 step) 

Note: * P-value < 10%, ** P-value < 5%, *** P-value < 1%. The columns of 2.5% and 97.5% mean the lower and upper limits of the 95% confidence 

intervals for the OLS estimates. The columns of Q1 and Q3 mean the first and third quartiles of the calibrated coefficients associated to the explanatory 

variables. An adaptive bandwidth is used in the GWR and mixed GWR models. The bandwidths of the two models are chosen by minimizing the value of 

the corrected Akaike Information Criteria (AICc). Mixed GWR is calibrated based on the procedure described in Fotheringham et al. (2002, pp.65-68). 

Calibration is implemented using the R package “GWmodel” (Gollini et al. 2015; Lu et al. 2014b). 
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Table 6 Calibration results (MSA, distance cut-off: 75 miles) 

Dep. Variable: 

ln Patent 

Model 4 Model 5       Model 6       

OLS GWR 

   

  Mixed GWR 

     2.5% Estimate   97.5% Min. Q1 Median Q3 Max. Min. Q1 Median Q3 Max. 

Intercept -1.402 -0.997 *** -0.591 -2.936 -1.427 -1.136 -0.639 0.156 -2.432 -1.523 -1.166 -0.848 -0.182 

ln Private 0.039 0.059 *** 0.078 0.010 0.041 0.056 0.067 0.113   0.044 ***  

ln Univ 0.000 0.019 ** 0.038 -0.034 -0.001 0.016 0.034 0.082 -0.034 0.004 0.017 0.031 0.085 

ln Graduate 0.445 0.564 *** 0.683 0.297 0.575 0.689 0.777 1.079   0.664 ***  

ln Diversity -0.161 -0.032  0.098 -0.565 -0.269 -0.110 0.114 0.409 -0.487 -0.277 -0.074 0.130 0.334 

ln Large -0.154 -0.040   0.075 -0.348 -0.161 -0.060 0.066 0.420 -0.382 -0.132 -0.065 0.057 0.368 

ln Intra 0.003 0.038 ** 0.072 -0.093 0.009 0.028 0.053 0.152     0.028 ***   

ln Local.Private75 0.090 0.118 *** 0.147 0.041 0.097 0.128 0.152 0.208 -0.001 0.098 0.141 0.166 0.235 

ln Local.Univ75 -0.031 0.010  0.051 -0.059 0.027 0.053 0.072 0.154   0.041 ***  

ln Distant.Private75 0.190 0.239 *** 0.287 0.108 0.153 0.195 0.269 0.433 0.086 0.157 0.210 0.255 0.488 

ln Distant.Univ75 0.087 0.144 *** 0.202 0.018 0.059 0.087 0.143 0.269   0.108 ***  

ln Size 0.330 0.391 *** 0.453 0.136 0.280 0.461 0.552 0.713 0.201 0.301 0.486 0.573 0.713 

Observations   853     853         853         

Adjusted R
2
  0.919   0.935     0.933     

RSS  207.2   144.8     155.0     

AICc   1240.2     1107.9         1106.9         

Kernel function         Gaussian       Gaussian       

Bandwidth         61         61 (in 1
st
 and 2

nd
 steps), 54 (in 4

th
 step) 

        

Note: * P-value < 10%, ** P-value < 5%, *** P-value < 1%. The columns of 2.5% and 97.5% mean the lower and upper limits of the 95% confidence 

intervals for the OLS estimates. The columns of Q1 and Q3 mean the first and third quartiles of the calibrated coefficients associated to the explanatory 

variables. An adaptive bandwidth is used in the GWR and mixed GWR models. The bandwidths of the two models are chosen by minimizing the value of 

the corrected Akaike Information Criteria (AICc). Mixed GWR is calibrated based on the procedure described in Fotheringham et al. (2002, pp.65-68). 

Calibration is implemented using the R package “GWmodel” (Gollini et al. 2015; Lu et al. 2014b). 
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Table 7 Calibration results (non-MSA, distance cut-off: 50 miles) 

Dep. Variable: 

ln Patent 

Model 7 Model 8       Model 9       

OLS GWR 

   

  Mixed GWR 

     2.5% Estimate   97.5% Min. Q1 Median Q3 Max. Min. Q1 Median Q3 Max. 

Intercept -0.828 -0.662 *** -0.496 -1.431 -1.113 -0.860 -0.540 -0.225 -1.722 -1.161 -0.886 -0.556 0.026 

ln Private 0.069 0.107 *** 0.144 -0.067 0.032 0.097 0.148 0.286 -0.111 0.026 0.102 0.174 0.586 

ln Univ 0.049 0.084 *** 0.119 -0.077 0.052 0.095 0.130 0.203   0.100 ***  

ln Graduate 0.373 0.455 *** 0.536 -0.232 0.261 0.351 0.516 0.756 -0.611 0.211 0.342 0.473 0.914 

ln Diversity -0.138 -0.022  0.094 -0.461 -0.128 0.069 0.186 0.323   0.055 ***  

ln Large -0.232 -0.185 *** -0.137 -0.325 -0.143 -0.078 -0.026 0.138 -0.567 -0.171 -0.071 -0.007 0.227 

ln Intra 0.046 0.065 *** 0.084 0.004 0.047 0.057 0.070 0.104     0.052 ***   

ln Local.Private50 0.098 0.165 *** 0.233 -0.332 0.108 0.182 0.270 0.509   0.149 ***  

ln Local.Univ50 0.038 0.128 *** 0.217 -0.169 0.027 0.137 0.250 0.610   0.142 ***  

ln Distnat.Private50 0.073 0.096 *** 0.119 -0.004 0.059 0.085 0.105 0.173   0.081 ***  

ln Distnat.Univ50 0.105 0.138 *** 0.172 0.033 0.088 0.120 0.166 0.336   0.113 ***  

ln Size 0.460 0.501 *** 0.541 0.225 0.437 0.505 0.591 0.796 0.252 0.435 0.522 0.622 0.906 

Observations   2256     2256         2256         

Adjusted R2  0.701   0.729     0.732     

RSS  544.7   451.1     447.7     

AICc   3222.4     3084.3         3057.9         

Kernel function     Gaussian    Gaussian    

Bandwidth         86         86 (in 1
st
 and 2

nd
 steps), 38 (in 4

th
 step) 

        

Note: * P-value < 10%, ** P-value < 5%, *** P-value < 1%. The columns of 2.5% and 97.5% mean the lower and upper limits of the 95% confidence 

intervals for the OLS estimates. The columns of Q1 and Q3 mean the first and third quartiles of the calibrated coefficients associated to the explanatory 

variables. An adaptive bandwidth is used in the GWR and mixed GWR models. The bandwidths of the two models are chosen by minimizing the value of the 

corrected Akaike Information Criteria (AICc). Mixed GWR is calibrated based on the procedure described in Fotheringham et al. (2002, pp.65-68). 

Calibration is implemented using the R package “GWmodel” (Gollini et al. 2015; Lu et al. 2014b). 
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Table 8 Calibration results (non-MSA, distance cut-off: 75 miles) 

Dep. Variable: 

ln Patent 

Model 10 Model 11       Model 12       

OLS GWR 

   

  Mixed GWR 

     2.5% Estimate   97.5% Min. Q1 Median Q3 Max. Min. Q1 Median Q3 Max. 

Intercept -0.824 -0.659 *** -0.494 -1.457 -1.138 -0.852 -0.573 -0.263 -1.823 -1.191 -0.900 -0.485 0.081 

ln Private 0.066 0.103 *** 0.140 -0.099 0.040 0.098 0.148 0.307 -0.163 0.007 0.090 0.162 0.755 

ln Univ 0.053 0.088 *** 0.122 -0.079 0.056 0.105 0.138 0.235   0.103 ***  

ln Graduate 0.371 0.452 *** 0.534 -0.248 0.247 0.341 0.510 0.761 -0.733 0.206 0.329 0.480 0.922 

ln Diversity -0.132 -0.016  0.099 -0.472 -0.110 0.078 0.192 0.361   0.053 ***  

ln Large -0.231 -0.183 *** -0.136 -0.346 -0.136 -0.069 -0.016 0.147 -0.611 -0.181 -0.060 0.012 0.334 

ln Intra 0.047 0.066 *** 0.084 0.005 0.046 0.058 0.071 0.103     0.053 ***   

ln Local.Private75 0.080 0.131 *** 0.181 -0.192 0.100 0.155 0.275 0.662 -0.797 0.050 0.156 0.304 1.695 

ln Local.Univ75 0.124 0.200 *** 0.276 -0.138 0.088 0.197 0.344 0.648   0.195 ***  

ln Distant.Private75 0.071 0.095 *** 0.118 -0.005 0.056 0.085 0.104 0.167   0.072 ***  

ln Distant.Univ75 0.090 0.124 *** 0.158 -0.023 0.073 0.105 0.161 0.342 -0.089 0.061 0.112 0.172 0.656 

ln Size 0.457 0.497 *** 0.537 0.204 0.434 0.506 0.592 0.788 0.128 0.404 0.513 0.639 0.982 

Observations   2256     2256         2256         

Adjusted R2  0.704   0.736     0.747     

RSS  538.9   436.8     398.6     

AICc   3198.4     3039.5         2987.1         

Kernel function         Gaussian       Gaussian       

Bandwidth         79         79 (in 1
st
 and 2

nd
 steps), 31 (in 4

th
 step) 

        

Note: * P-value < 10%, ** P-value < 5%, *** P-value < 1%. The columns of 2.5% and 97.5% mean the lower and upper limits of the 95% confidence 

intervals for the OLS estimates. The columns of Q1 and Q3 mean the first and third quartiles of the calibrated coefficients associated to the explanatory 

variables. An adaptive bandwidth is used in the GWR and mixed GWR models. The bandwidths of the two models are chosen by minimizing the value of the 

corrected Akaike Information Criteria (AICc). Mixed GWR is calibrated based on the procedure described in Fotheringham et al. (2002, pp.65-68). 

Calibration is implemented using the R package “GWmodel” (Gollini et al. 2015; Lu et al. 2014b). 
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Fig. 1 MGWR coefficients of local private knowledge spillovers (MSA, distance cut-off: 75 miles) 

 

 

Fig. 2 MGWR coefficients of distant private knowledge spillovers (MSA, distance cut-off: 75 miles) 
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Fig. 3 Total patent applications per employee (MSA) 

 

 

Fig. 4 MGWR coefficients of local private knowledge spillovers (non-MSA, distance cut-off: 75 miles)  
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