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Abstract: 

Since our observation of the regional economy depends on the scale of temporal/spatial units, 

even under the same underlying disaggregated level data generating process, we can encounter 

different neighborhood effects or spillovers.  In this paper, the amount of spillover is defined by 

the forecast error variance decomposition (FEVD), and the direction of spillover is defined by 

the long-run sign of the cumulative impulse response function (CIRF).  From an exercise using 

a constructed regional economic system, the size of spillover was found to decrease with spatial 

aggregation in a multi-level structure regional economic system.  However, no monotonic trend 

was found in terms of the relative portion of positive/negative spillovers.  In addition, the 

results from the real world data using different levels of aggregations, and the results drawn from 

the exercise on the constructed regional economic system are compared.  From this comparison, 

a multi-level structure model which assumes the existence of higher level common factor 

affecting the regional units was found to concord with logical experiments conducted over the 

constructed regional economic system. 
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1.  Introduction 

This paper aims to unravel how the observed spatial relationship changes as the frequency/scale 

of the temporal/spatial unit altered.  Whether temporal or spatial, the level of aggregation 

always becomes a problem when analyzing spatial relationships.  For example, in terms of the 

spatial dimension, most researchers seem to agree that more disaggregated data better reveals 

spatial dependencies.  In terms of temporal dimension, researchers’ opinions vary.  Some argue 

that a longer time period allows spatial spillover effects to be propagated through the observed 



3 

 

spatial units, thus lower frequency data exhibit a larger amount of spillovers; however, other 

researchers provide opposing interpretations. 

In this paper, spillover effects are defined using forecast error variance decomposition (FEVD) 

and cumulative impulse response function (CIRF).  FEVD decomposes the variances of the 

regional behaviors into their sources for a given forecasting horizon.  Thus, the “amount” of 

spillover can be defined as the portion of the neighborhood innovation relative to the regional 

variance.  CIRF measures the cumulative effect of a regional shock on the future values of 

regional values.  Thus, the “direction” of a spillover can be defined as the sign of the long-term 

cumulative response. 

Although the conclusions are derived from an experiment using a simple artificial regional 

economic structure, this paper argues that we should expect to observe a smaller volume of 

spillovers with larger frequency/scale of temporal/spatial units.  Also, when the disaggregated 

level regional economy is all competitive, i.e., the immediate next period neighborhood effect is 

negative for every regional unit, we should expect to observe more positive spillovers with odd 

numbers of temporal aggregations, but less positive spillovers with even numbers of temporal 

aggregations.  However, when the regional economy is mixed with competitive and 

complementary relationships, there is no monotonic trend of the relative portion of positive 

spillovers over the level of aggregations. 

This finding is more in concord with the assumption that there exists a common factor governing 

the behaviors of all of the regional units (multi-level structure).  In our exercise on real world 

data, under the multi-level assumption, on average, we observe less spillover effects with larger 

scale of spatial or frequency of temporal units when we assume the existence of common factor.  

However, these patterns are not observed when we assume there is no common factor (single-

level structure). 

Over a century ago, W. F. Gosset (Student) also thought about this problem, and in his letter to 

Karl Pearson in December 1910, he made a similar conclusion: “Now in general the correlation 

weakens as the unit of time or space grows larger and I can’t help thinking that it would be a 

great thing to work out the law according to which the correlation is likely to weaken with 

increase of unit” (Pearson, 1990).  His notion of correlation was retranslated into FEVD and 

CIRF in the regional economic activity analysis context. 

In this paper, a simple exercise was conducted using a restricted VAR(1) type of data generating 

process to see how the observed spatial relationship are altered as the level of aggregation of the 

observation changes.  A more generalized version of the same exercise also can be done, but 

this simple exercise is believed to produce enough implications of the effect of the aggregation in 

the spatial analysis literature. 

Additionally, as noted earlier, this paper incorporated a multi-level concept developed by Bai and 

Wang (2012) and Corrado and Fingleton (2011) in analyzing the spatial relationships.  To 



4 

 

illustrate more, a multi-level structure of regional economic system assumes that there is are 

higher-level determinants that affect the behavior of spatial units.  For example, the behavior of 

each of the U.S. states is determined by the state’s own determinants as well as the national 

determinants such as federal-level monetary/fiscal policy, exchange rates, commodity prices and 

so on.  Thus, in practice, the region common factor is the national level economic behavior, and 

in our model, it is an exogenous, or almost exogenous,
1
 factor affecting the regional economic 

behavior.  By introducing an hierarchical structure into spatial analysis, a multi-level analysis 

argues that the co-moving behaviors of spatial units are largely due to these higher-level 

determinant(s), whereas a single-level analysis argues that the higher-level structure is a 

summation of its sub-units, e.g. the U.S. is composed of the U.S. states, thus co-moving 

behaviors are largely due to the spillover effects.  By comparing the forecast error variance 

decomposition and the impulse responses of regional observations using both concepts, this 

paper argues that a multi-level concept explains the real world data in a more realistic way. 

Recent studies on the spatial or temporal aggregation problems are briefly introduced in the next 

section.  In section 3, a multi-level and a single-level spatial analysis using the Bai and Wang 

(2012) formulation on the real world data are performed and the results are compared.  In 

section 4, an artificial regional economic system is constructed to see how the observed 

spillovers change with the level of temporal/spatial aggregation, and section 5 provides some 

concluding remarks. 

 

2.  Literatures on Temporal and Spatial Aggregation 

While the primary focus of this paper is on what we should expect to observe in terms of the 

spillover effects with different levels of data aggregation, most of the previous work has focused 

on other issues such as the biasedness or the efficiency loss of the estimated coefficients at the 

aggregated level when the true data generating process is defined at the micro level.  Regarding 

the temporal aggregation problem, examples are just too many to introduce here since, 

depending on the interests of the researcher, each of the properties of time-series model, such as 

impulse response analysis, cointegration, unit root test and so on are dealt individually in many 

studies.  To list a few related to this paper’s interest, Brewer (1973), Wei (1981) and Weiss 

(1984) tackle the issues related to temporal aggregation in an empirical studies.  Marcellino 

(1999) reviewing the literature on this issue showed that impulse response functions and forecast 

error variance decompositions, along with other properties such as Granger-causality and 

cointegration, change with the level of aggregation. 

                                           
1
 Almost exogenous means regional shock does not have a significant impact on the region common economic 

behaviors.  More practically, in the model structure, the coefficients associated with the effect from regional shock 

to the region common behavior should be close to zero so that the local impact on the global behavior decays very 

fast throughout time. 
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The spatial aggregation problem, or the modifiable areal unit problem (MAUP),
2
 also has been 

an interest of spatial analysts for a long time since the pioneering work of Gehlke and Biehl 

(1934).  The effects on standard regression estimators are dealt in Barker and Pesaran (1989), 

Okabe and Tagashira (1996), Tagashira and Okabe (2002) and Griffith et al. (2003).  Their main 

findings are that “the GLS estimators of regression’s parameters are BLUE with a sampling 

variance greater than that obtained using GLS on the original data” (Arbia and Petrarca, 2011).  

Arbia and Petrarca (2011) also explored the efficiency loss of the estimators in the presence of 

spatial dependency. 

However, attempts to find a general “law” or some monotonic relationships, between the scale of 

grouping, or the level of aggregation, and the spillover effects, that can be defined in terms of 

forecasting error variance decomposition and the impulse response function, is very rare.  There 

is some empirical work exploring the effect of the scale of unit effects on the correlation 

coefficients or Moran’s I such as in Arbia (1989).  Gehlke and Biehl (1934) explored the effect 

of the aggregation on the correlation coefficient between observations, and Smith (1938) 

explored the correlation coefficient with different plot sizes in an agricultural experiment.  Also, 

Dusek (2004) showed how different geographical statistics varied with different levels of 

aggregations on Hungarian regional economic data.  However, Gehlke and Biehl (1934)’s 

finding that the correlation coefficient for variables of absolute measurement increases when 

areal units are aggregated contiguously, while Dusek (2004)’s finding that more aggregated 

observations exhibit higher Moran’s I are exactly the opposite of Gosset’s idea that the 

correlation will weaken with the increase of scale. 

On the contrary, in agricultural studies, Gosset’s idea is supported in both theoretical and 

empirical works.  For example, in Gelfand, et al. (2010), when the covariance between spatial 

units are defined in terms of area and distance, the inverse relationship between the aggregation 

level and the covariance are easy to assess.  Following Gelfand, et al. (2010), suppose a 

stationary spatially continuous stochastic process S(x)with covariance function cov�S(x), S(y)� = ��(�) where � is the distance between the locations x and y. 

The covariance between spatial averages of S(∙) over two regions A and B is: 

 γ(A, B) = (|A| × |�|)��� � � �(‖� − �‖)  �  �!"     (1) 

where |∙| denotes area and ‖∙‖ distance. 

 

The above equation supports Gosset’s statement since in a space where the correlations are 

decreasing with the distance, the correlation weakens with the larger scale of unit.  For instance, 

                                           
2
 MAUP refers to the spatial data problem associated with the scale of grouping and the zoning problem.  In this 

paper, the spatial data problem is dealt only in terms of the scale of grouping, or the level of aggregation. 
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when the covariance is proportional to the inverse distance, then the aggregation of the four 

equal-sized spatial units will result in the half size value of the original covariance.  Empirical 

study of the correlations defined by the distance between objects can be found in Whittle (1956, 

1962) and MacCullagh and Clifford (2006).   

However, in more general spatial economic analysis, where the spillovers are not defined by 

correlations, and negative spillover exists, this type of argument is not applicable.  In this case, 

spatial dependency should be assessed using the concept of spillover that can be defined with, for 

example, forecast error variance decomposition or impulse response function, rather than 

correlation coefficient.  In other words, the correlation coefficient measures the degree of the 

co-movement whereas the spillover effects measures the effects from the neighborhood. 

This conceptual distinction is more straightforward in a multi-level structure regional economic 

system.  For example, in a multi-level structure state-level economy, two independent counties 

can have high correlation coefficient if they are exposed to a same state-level shock, and having 

similar response functions in response to this shock.  Thus, if an economy is a multi-level 

structure, regions with high correlation coefficient may not be highly correlated.  That is, they 

are correlated to common factor rather than directly dependent to each other.  On the contrary, 

of course, in a single-level structure economy, high-correlation coefficient implies big spillover 

effects, thus the concept of correlation coefficients and spillovers can be used interchangeably. 

The researcher’s belief on the existence of a common factor becomes more important in 

empirical analysis.  For example, equating the co-movement to spillovers where the economy is 

a multi-level structure can exaggerate or bias the impact of local policy on its neighborhood 

regions.  Likewise, assuming the common factor where there is no such thing can underestimate 

or bias the impact of local shock.  However, in practice, we cannot distinguish whether the 

observed high correlations between regional units are due to the existence of common factor or 

the high dependency between regional units.  This issue will be addressed in subsequent 

sections. 

 

3.  A Factor Analysis Exercise on the Real World Data 

Although, we cannot distinguish whether the observed co-moving behaviors are due to the 

existence of common factor(s) or due to the high dependency between regional units; some 

differences can be observed between those two conflicting views if we analyze them while 

altering the scale of units.  Using the approach of Bai and Wang (2012), a multi-level and a 

single-level dynamic factor analysis is conducted on selected regions. Chung and Hewings (2014) 

revealed that in a multi-level model, the portion of spillover effects decreases on average with 

the larger scale of the spatial or with higher frequency of temporal units, while this inverse 

relationship is not found in a single-level model. 
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3.1 Single and Multi-level Dynamic Factor Model Overview
3
 

A single level dynamic factor model for R-regional units with a VAR(1) structure can be 

expressed as equations (2)~(4): 

 

#�$�⋮�$&' = #(�()) … 0⋮ ⋱ ⋮0 … (&())' -.$�⋮.$&/ + #�$�⋮�$&'     (2) 

12())�$2 = 3$2      ∀ 5 ∈ �1, … 8�       (3) 

-.$�⋮.$&/ = #9�� … 9�&⋮ ⋱ ⋮9&� … 9&&' -.$���⋮.$��& / + #:$�⋮:$&'      (4) 

where �$2 is ; × 1 vector of endogenous region r observations, .$2  is unobservable fundamental forces that affect the dynamics of �$2 , and <(:$2| .$��� , … , .$��& ) = 0   ∀ = ∈ �1, … , >� ?@  ∀ 5 ∈ �1, … , 8�, <(�$2|.$�, … , .$&  ) = 0   ∀ = ∈ �1, … , >� ?@  ∀ 5 ∈ �1, … , 8� ,  <A�$2B�$2CD.$�, … , .$&E = 0   ∀ F ≠ H ∈ �1, … , ;�, ∀ = ∈ �1, … , >� ?@  ∀ 5 ∈ �1, … , 8�, 

and <A�$I�$JD.$�, … , .$&E = 0   ∀ = ∈ �1, … , >� and ∀ ? ≠ N, 5 ∈ �1, … , 8�. 

 

The observed variables of each region �$2  is decomposed into two parts of shocks, regional 

dynamic factor, .$2, and idiosyncratic error, �$2.  The spatio-temporal relationship of regional 

factor can be found in the coefficient matrix of state equation of dynamic factor, equation (4).  

From this coefficient, we can derive the forecast error variance decomposition (FEVD) and 

cumulative impulse response functions (CIRF), and assess the spatio-temporal dynamics of 

regional business cycles.  Thus, in this sense, the “spillover” is larger if the neighborhood 

region’s percentage portion of FEVD is larger, and is positive (negative) if the cumulative 

response to the impact from its neighbor is positive (negative). 

A multi-level version of the above equations is shown in equations (5)~(7): 

 

#�$�⋮�$&' = #O�()) (�()) … 0⋮ ⋮ ⋱ ⋮O&()) 0 … (&())' PQ$.$�⋮.$&
R + #�$�⋮�$&'    (5) 

12())�$2 = 3$2      ∀ 5 ∈ �1, … 8�       (6) 

                                           
3
 A more detailed introduction of dynamic factor model can be found in Chung (2013), and the estimation scheme 

can be found in Bai and Wang (2012). 
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PQ$.$�⋮.$&
R = # 9�� … 9� (&S�)⋮ ⋱ ⋮9(&S�)� … 9(&S�)(&S�)' PQ$��.$���⋮.$��& R + TUU

V:$W:$�⋮:$&XYY
Z
    (7) 

where �$2 is ; × 1 vector of endogenous regional observations, .$2  is unobservable fundamental forces that affect the dynamics of �$2 , and Q$ is unobservable fundamental force that affects the dynamics of (�$�, … , �$&) <(:$2| Q$��, .$��� , … , .$��& ) = 0   ∀ = ∈ �1, … , >� ?@  ∀ 5 ∈ �Q, 1, … , 8�, <(�$2|Q$, .$�, … , .$&  ) = 0   ∀ = ∈ �1, … , >� ?@  ∀ 5 ∈ �1, … , 8� ,  <A�$2B�$2CDQ$, .$�, … , .$&E = 0   ∀ F ≠ H ∈ �1, … , ;�, ∀ = ∈ �1, … , >� ?@  ∀ 5 ∈ �1, … , 8�, 

and <A�$I�$JD.$�, … , .$&E = 0   ∀ = ∈ �1, … , >� and ∀ ? ≠ N, 5 ∈ �1, … , 8�. 

 

The equations (5)~(7) are similar to the equation system (2)~(4), but now it assumes that there 

exists a global shock, Q$, which governs the behavior of all the regional units. 

Using Gibbs Sampling Algorithm in WinBUGS4 5, FEVD and CIRF are estimated. 

 

3.2 Exercises on the Selected Regions with Different Scale Units 

A single-level dynamic factor model (equations 2~4) and a multi-level dynamic factor model 

(equations 5~7) are estimated on the selected regional employment series with different temporal 

frequencies and spatial scales: monthly frequency county level, group level, state level and 

regional division level data are analyzed, and the county level monthly, quarterly and biannual 

frequency data are also analyzed.  At the county level, Peoria, Tazewell, McLean, Champaign 

and Vermilion Counties in Illinois were selected, since outside around those counties as a group, 

populations are very sparse, so those five counties are thought to have a natural common border.  

At the group level, those five counties are referred to as the “I74” group.
6
  Other groups are the 

St.Louis Group, Quad City Group, Springfield Group and Chicago Group that are all located 

inside or close to the state of Illinois.  Each group consists of 2~12 counties, and, like “I74” 

group, populations are very sparse outside the counties consisting each group.  The detailed 

descriptions are provided in figure 1. 

  

                                           
4
 Bayesian Inference Using Gibbs Sampling for Windows 

5
 Only VAR(1) structure model estimation results are presented in section 3.2 since, according to the Deviations 

Information Criteria (DIC), any higher lag order does not outperform VAR(1) structure of equations introduced in 

section 3.1.  Also, the Bayesian inference relies on priors, but for this exercise, uninformative priors were used.  

More detailed procedures can be found in Chung (2013). 
6
 It is named after the interstate highway I-74, because those counties are located along this highway. 
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Figure 1.     Group Data Specifications 

 

 

 

 

 

At the state level, six Great 

Lake states, Illinois, Indiana, 

Michigan, Minnesota, Ohio 

and Wisconsin, were selected.  

The regional division level 

units are simply the four U.S.  

regional divisions (Northeast, 

Midwest, South and West).
7
. 

To compare the consequences 

of the use of different temporal 

frequencies of observations, 

county level monthly data 

were aggregated to generate 

quarterly and biannual series. 

Using those data sets, a single-level dynamic factor model (equations 2~4) and a multi-level 

dynamic factor model (equations 5~7) were estimated.  The FEVD results with different 

temporal scale derived from a multi-level model are presented in table 1
8
. 

 

Table 1. Temporal Aggregation using a Multi-level Structure Model 

- Point Estimates of 1-year ahead Forecast Error Variance Decomposition 

* Capital letters denote regions, for example, “G” denotes region common shock, and A: Peoria County, B: Tazewell 

County, C: McLean County, D: Champaign County, E: Vermilion County 
 

  A B C D E G Total   neighbor own common 

A 23.4% 65.7% 2.8% 3.7% 3.1% 1.4% 100% 
 

75.2% 23.4% 1.4% 

B 18.3% 69.8% 4.1% 3.6% 2.6% 1.6% 100% 
 

28.6% 69.8% 1.6% 

C 15.2% 75.9% 1.2% 3.9% 3.3% 0.5% 100% 
 

98.2% 1.2% 0.5% 

D 32.3% 43.2% 16.3% 3.0% 1.0% 4.2% 100% 
 

92.8% 3.0% 4.2% 

E 28.4% 41.1% 13.2% 3.1% 3.9% 10.3% 100%   85.8% 3.9% 10.3% 

        
average 76.1% 20.3% 3.6% 

                                           
7
 Except for the regional division level spatial units, the selection of the regional units at all other levels suffer 

borderline problem since there is a possibility that some relevant regional unit could have been omitted.  However, 

further consideration of solving this borderline problem was not tried here since this section aims to sketch how the 

aggregation of spatial temporal unit affects the observed spillover effects in the real world data, and does not aims to 

exactly identify the regional economic system. 
8
 The results for single-level model are available in Appendix 1. Appendices are available at 

www.real.illinois.edu/d-paper/14/AggAppendix.pdf  

Map Source: https://www.donatelifeillinois.org/wp-

content/themes/donatelife/map/default.html?id=18 

Cut-off: Population over 8,000 in 

2011 are consisting group 

observations 

(Except for Boone county 

(population 5,400) near Chicago) 

Group “Chicago” 

(12 counties) 

Winnebago, Boone, 

McHenry, Lake, Dekalb, 

Kane, Dupage, Cook, La 

Salle, Kendall, Will and 

Kankakee 

Group “I74” (5 counties) 

Peoria, Tazwell, McLean, 

Champaign and 

Group “Springfield” 

(2 counties) 

Sangamon and 

Macon 

Group “St.Louis” (8 counties) 

Madison, St.Clair, St.Charles 

(MO), St.Louis(MO), 

St.Francois(MO), Jefferson(MO), 

Franklin(MO) and St.Louis 

city(MO) 

Group “Quad” 

(2 counties) 

Rock Island and 

Scott(IA) 
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  A B C D E G Total   neighbor own common 

A 4.3% 1.8% 10.0% 4.7% 1.9% 77.3% 100% 
 

18.4% 4.3% 77.3% 

B 2.4% 1.4% 5.8% 3.1% 15.9% 71.4% 100% 
 

27.2% 1.4% 71.4% 

C 0.9% 0.4% 21.6% 1.7% 58.6% 16.8% 100% 
 

61.6% 21.6% 16.8% 

D 1.8% 0.7% 22.5% 5.9% 55.3% 13.8% 100% 
 

80.2% 5.9% 13.8% 

E 1.5% 0.2% 34.6% 2.1% 60.6% 1.0% 100%   38.4% 60.6% 1.0% 

        
average 45.1% 18.8% 36.1% 

 

  A B C D E G Total   neighbor own common 

A 0.2% 0.4% 1.0% 0.0% 0.0% 98.3% 100% 
 

1.5% 0.2% 98.3% 

B 0.7% 69.6% 4.4% 0.3% 2.4% 22.5% 100% 
 

7.9% 69.6% 22.5% 

C 0.0% 26.9% 1.7% 3.8% 0.0% 67.6% 100% 
 

30.7% 1.7% 67.6% 

D 0.6% 84.1% 3.1% 9.5% 2.3% 0.4% 100% 
 

90.1% 9.5% 0.4% 

E 2.9% 70.1% 4.5% 6.7% 8.2% 7.7% 100%   84.1% 8.2% 7.7% 

        
average 42.9% 17.8% 39.3% 

 

The point estimates of 1-year ahead FEVD using a multi-level structure model shows that 

although the amount of spillover varies a lot depending on the individual regional units, on 

average, larger temporal scale observations generate less neighborhood portion of FEVD.  

Accordingly, as the temporal scale becomes larger, the portion from the innovation from the 

region own decreases, but the innovation from the region common factor increases.  On the 

contrary, a single-level structure model shows no specific pattern related to the level of temporal 

aggregation, having the neighborhood portion of variance about 70% regardless of the temporal 

scale. 

The FEVD results with different spatial scales exhibit a similar trend for the multi-level structure 

model.  In table 2, the portion of the neighborhood innovation decreases with larger scale of 

spatial units on average, but the portion of the region common factor increases.  In similar 

fashion to the case of temporal aggregation, a single-level structure model does not exhibit any 

specific trend with the level of the spatial aggregation.
9
 

 

 

 

 

Table 2.  Spatial Aggregation using a Multi-level Structure Model 

- Point Estimates of 12-step ahead Forecast Error Variance Decomposition 

* Capital letters denote regions, for example, “G” denotes region common shock. 

 

                                           
9
 The results for single-level model are available in Appendix 2. 
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    * A: Peoria County, B: Tazewell County, C: McLean County, D: Champaign County, E: Vermilion County 

  A B C D E G Total   neighbor own common 

A 23.4% 65.7% 2.8% 3.7% 3.1% 1.4% 100% 
 

75.2% 23.4% 1.4% 

B 18.3% 69.8% 4.1% 3.6% 2.6% 1.6% 100% 
 

28.6% 69.8% 1.6% 

C 15.2% 75.9% 1.2% 3.9% 3.3% 0.5% 100% 
 

98.2% 1.2% 0.5% 

D 32.3% 43.2% 16.3% 3.0% 1.0% 4.2% 100% 
 

92.8% 3.0% 4.2% 

E 28.4% 41.1% 13.2% 3.1% 3.9% 10.3% 100%   85.8% 3.9% 10.3% 

        
average 76.1% 20.3% 3.6% 

 

    * A: St.Louis Group, B: Quad Cities Group, C: Springfield Group, D: Chicago Group, E: I74 Group 

  A B C D E G Total   neighbor own common 

A 3.1% 7.2% 65.0% 18.6% 0.5% 5.7% 100% 
 

91.2% 3.1% 5.7% 

B 1.8% 12.1% 64.0% 18.3% 0.5% 3.2% 100% 
 

84.7% 12.1% 3.2% 

C 1.9% 1.2% 84.9% 8.0% 0.2% 3.8% 100% 
 

11.3% 84.9% 3.8% 

D 1.4% 6.7% 62.2% 24.4% 1.0% 4.4% 100% 
 

71.3% 24.4% 4.4% 

E 2.0% 7.3% 59.5% 21.6% 1.4% 8.1% 100%   90.5% 1.4% 8.1% 

        
average 69.8% 25.2% 5.0% 

 

    * A: Illinois, B: Indiana, C: Michigan, D: Minnesota, E: Ohio, F: Wisconsin 

  A B C D E F G Total neighbor own common 

A 79.1% 2.3% 7.9% 6.2% 0.8% 0.2% 3.5% 100% 17.4% 79.1% 3.5% 

B 57.5% 2.4% 29.2% 4.4% 0.4% 0.6% 5.5% 100% 92.1% 2.4% 5.5% 

C 7.6% 0.2% 70.3% 10.3% 4.7% 3.1% 3.8% 100% 25.9% 70.3% 3.8% 

D 4.8% 0.2% 6.4% 77.5% 3.3% 2.7% 5.2% 100% 17.3% 77.5% 5.2% 

E 24.2% 1.4% 3.3% 2.3% 65.4% 0.1% 3.3% 100% 31.3% 65.4% 3.3% 

F 8.4% 0.4% 12.4% 46.1% 11.3% 3.7% 17.6% 100% 78.7% 3.7% 17.6% 

        
average 43.8% 49.7% 6.5% 

 

    * A: Northeast Regional Division, B: Midwest Regional Division, C: South Regional Division, D: West 

Regional Division 

  A B C D G Total     neighbor own common 

A 16.2% 0.2% 4.4% 0.3% 78.9% 100% 
  

4.9% 16.2% 78.9% 

B 0.7% 2.1% 0.2% 0.1% 96.9% 100% 
  

1.0% 2.1% 96.9% 

C 3.1% 0.3% 2.7% 0.8% 93.1% 100% 
  

4.2% 2.7% 93.1% 

D 8.0% 0.2% 2.5% 0.4% 88.9% 100%     10.7% 0.4% 88.9% 

        
average 5.2% 5.3% 89.5% 

 

A regional economic performance attributable to neighborhood or region common factor is 

thought to be dependent on its geographical location or the relative position in the value chain, 

but the portion on average seems to exhibit some kind of monotonic trends related to the level of 

temporal/spatial aggregation in a multi-level structure model.  If there really exists trends, then 
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it should be in concord with the thought experiment of a constructed regional economic system 

presented in the next section, and it is found that the real world results from the multi-level 

structure model are consistent in most aspects with the results drawn from the exercise on the 

constructed regional economic system. 

Regarding the direction of the spillovers (CIRFs), no monotonic trend was found.
10

  In the 

multi-level structure model, a positive spillover dominates in the most spatially aggregated 

observations (division level), but in the single-level structure model, a positive spillover 

dominates in the third-level spatial aggregation (state level).  However, it is hard to say there is 

any trend existing related to the level of temporal/spatial aggregation (table 3). 

 

Table 3. Numbers of the Signs of the Cumulative Responses to the Impulses from Neighboring Regions 

 

 

sign of response - + 0 total #+/#- 

county 7 8 5 20 1.1 

group 3 2 15 20 0.7 

state 7 10 13 30 1.4 

division 1 2 9 12 2.0 

quarterly 4 4 12 20 1.0 

biannual 4 6 10 20 1.5 

 

sign of response - + 0 total #+/#- 

county 5 8 7 20 1.6 

group 4 6 10 20 1.5 

state 5 21 4 30 4.2 

division 4 8 0 12 2.0 

quarterly 5 7 8 20 1.4 

biannual 4 6 10 20 1.5 
 

 

* Signs are decided according to the 90% confidence interval. (Thus, “0” means insignificant at 90% CI) 
* For county, group, state and division observations, 12-step ahead CIRFs were used. For quarterly and biannual 

observations, 1-year ahead CIRFs were used. 

In the next section, by constructing an artificial regional economic system, the consequences of 

the temporal/spatial aggregation over the amount and the direction of spillovers are compared 

with the results from this section’s empirical findings. 

                                           
10

 CIRF results are provided in appendix 3 (multi-level dynamic factor model) and in appendix 4 (single-level 

dynamic factor model). 
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4.  Practice on Constructed Regional Economic System 

4.1 Assumptions on the Constructed Regional Economic System 

The aggregation scheme that we are using on our practice is average sampling 11 , i.e., [QQ5\Q?=\  ]N^\5_?=F`@ ?= = = ∑ 1F^?QQ5\Q?=\  ]N^\5_?=F`@^  �5F@Q = .  Also, the 

true data generating process is defined at the most disaggregated level. 

The first assumption that the aggregation scheme should be average sampling is not applicable to 

most empirical analyses in its original form, but in many cases, aggregations are approximately 

average sampling.  In the previous section, the dependent variable at the aggregated level is 

constructed from the aggregation of the disaggregated level data, log-transformed, and first-

differenced.  Thus, this example is not an average sampling per se.  However, since the first-

differenced value of log-transformed value is a first-order Taylor-expansion of the growth rate, 

and assuming that the initial status of the observations are approximately the same, the arithmetic 

average of the growth rate is almost the same as the first-differenced log-transformed 

observations.12 

The second assumption that the true data generating process is defined at the most disaggregated 

level is necessary in order to conduct the experiments in this section.  The reason is that if the 

true data generating process is defined at an aggregated level, we do not have to discuss what is 

going on at the disaggregated level because every significant interaction identified at the 

disaggregated level will all be spurious.  Additionally, in a real world situation, spatial 

interactions are mostly vivid at the disaggregated level.13 

In addition to those two restrictions, only a spatially stationary data generating process
14

 is 

employed here, since a spatially non-stationary process is not within the scope of this paper. 

The artificial regional economic system is consisted of 1,024 cities arranged in 32 × 32 

rectangular country.  Four cities comprise one county, thus there are 256 counties arranged in 16 × 16 panel.  Likewise, four counties comprise one group (64 groups), four groups comprise 

one state (16 states), four states comprise one division (4 divisions).  The graphical 

representation of the land structure is shown in figure 2. 

                                           
11

 If a time series is stock data, the aggregation of the time series can be a point-in-time sampling, for example, [QQ5\Q?=\  ]N^\5_?=F`@ ?= = = )?^= 1F^?QQ5\Q?=\  ]N^\5_?=F`@  �5F@Q =.  For more detail, see 

Marcellino (1999). 

12
 For example, e@(?$ + N$ + f$) − e@(?$�� + N$�� + f$��) ≈ Ih�IhijSJh�JhijSkh�khijIhijSJhijSkhij ≈ �l (Ih�IhijIhij + Jh�JhijIhij +kh�khijIhij ) ≈ �l (Ih�IhijIhij + Jh�JhijJhij + kh�khijkhij ) ≈ �l �(e@ ?$ − e@ ?$��) + (e@ N$ − e@ N$��) + (e@ f$ − e@ f$��)�. 

13
 In February 2013, Beverly 18, a movie theater in Champaign, IL, closed, and shortly after, Savoy 16, a 

neighborhood movie theater in Savoy, IL opened a new I-Max theater, which provides an example of a negative 

spatial spillover effect at the disaggregated level data. 
14 That is, for example, the root of |m& − [ n| = 0 from equation (8) fall outside the unit circle. 
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Figure 2.       Constructed Regional Economy 

 

The true data generating process is defined at city level as shown in equation (8):
15

 

 o$ = Ao$�� + 3$, t = 1, … , T       (8) 

where, for a single-level structure, 

o$ = (�$�, �$�, … �$�r�s)′, A = u ?�,� ⋯ ?�,�r�s⋮ ⋱ ⋮?�r�s,� ⋯ ?�r�s,�r�sw and 

3$ = (3$�, 3$�, … 3$�r�s)~N(0, �m�r�s), � = 1, 

and for a multi-level structure, 

o$ = (�$z , �$�, �$�, … �$�r�s)′, A = { ?z,z ?z,� ⋯ ?z,�r�s?�,z ?�,� ⋯ ?�,�r�s⋮ ⋮ ⋱ ⋮?�r�s,z ?�r�s,� ⋯ ?�r�s,�r�s
| and 

3$ = (3$z , 3$�, 3$�, … 3$�r�s)~N(0, �m�r�s), � = 1. 

 ��$2 | 5 = 1, … , 1024� are dependent variables representing the regional economic behaviors, 

                                           
15

 A more general version of this kind of structure can be expressed as equation (*): o$ = ∑ [Bo$�B~B�� + 3$ ,   = = 1, … , >     (*) 

  where o$ = (�$�, �$�, … �$&)′ is an 8 × 1 dependent variables,  �[B|F = 1, . . , ;� are 8 × 8 coefficient matrices, E(3$) = 0, E(3$3$′) =  � (a positive definite coviariance matrix), E(3$3$�′) = 0 ∀= ≠ =′ 
For stationarity, all roots of Dm& − ∑ [BnB~B�� D = 0 fall outside the unit circle.  Also, (*) can be expressed as VMA 

form as in equation (**): o$ = ∑ �B3$�B�B�� , where �B = ∑ [C�B�C~C�� , F = 1, 2, …, and �r = m& and �B = 0 ∀i � 0.  Since in this general 

case where the error term structure is not diagonal, the time profile of the shock effects the FEVD and CIRF, thus in 

our case, the error term structure is set to be diagonal for simplicity. 
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whereas �$z  is a region common factor.  As noted earlier, the region common factor is little 

affected by local shocks by assumption, the elements, �?z,B | F = 1, … , 1024�, are set to be zero 

in the coefficient matrix.  One might claim that this exogeneity assumption is rather extreme 

because in reality, some spatial units or events can be powerful enough to affect the region 

common behavior.  However, in the case where the region common factor is endogenous, the 

region common component is equivalent to just adding another regional unit in equation (8) with 

a single-level structure.  Thus, by looking at the generated FEVD and CIRF results of the 

single-level structure model, we can easily conjecture that the results are drawn from an 

endogenous region common factor because the results should lie somewhere between multi-level 

structure model and single-level structure model. 

The above data generating process defines how the constructed cities interact through time and 

space.  In this economy, every regional interaction is determined by the coefficient matrix A 

such that a growth in region j at time t − 1 will induce ?B,C growth in region i at time t 
(neighborhood effect).  Note that the above process is defined using demeaned variables, thus at 

the steady state, the growth rate of every region will grow at the historical average, and o�$�I�� �$I$� = 0.  Thus, a typical local policy shock will exhibit a CIRF graph such as figure 

3.
16

 

 

Figure 3.   A Typical CIRF of Spatially Stationary Process 

t=1 t=3 t=6 t=9 t=12 t>15 

      

For CIRF, since the region common factor is exogenous in a multi-level structure economy, we 

do not have to use a multi-level version of the model in analyzing the transmission of the 

regional shock through space.  In other words, we can regard the single-level structure model as 

the residuals of the regional economic system net of the national factor, and then conduct the 

CIRF analysis.  On the contrary, for FEVD, the existence of the region common shock 

sometimes alters the overall trend over the aggregation.  Thus, FEVD results are presented for 

both multi-level and single-level structure economy, whereas CIRF results are presented for only 

single-level structure economy. 

 

4.2 Derivation of Aggregated Level FEVD and CIRF 

The derivation of the data generating process at the aggregated level is not very useful in our 

                                           
16

 A graphical example of a CIRF of a spatially non-stationary process is provided in appendix 5. 
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analysis of spillover effects.  Since the purpose of this paper is to see what we expect to observe 

at the aggregated level in terms of spillovers, and spillovers are defined by FEVD and CIRF in 

this paper, we can directly look at the aggregated form of FEVD and CIRF instead of deriving 

the aggregated level data generating process. 

The derivation of the data generating process for the temporally aggregated observations is 

relatively easier than that for the spatially aggregated observations.  In our case where there is 

only one lag dependent variable and i.i.d. error term with unit variance, the VAR(1) form can be 

preserved.  For an n − period  aggregation, i.e., o� = ∑ o$�B���B�r , equation (8) simply 

transforms into o� = [�o��� + ��, where �� = ∑ ([B���B�r ∑ 3$�B�C���C�r ).  However, in practice, 

since the error term, ��, is the superposition of n-multivariate normal distributions, if we assume 

approximate normality on the error term of the aggregated form, then it suffers a problem that we 

are automatically assuming the effects of the innovations at all n-sub periods are the same within 

one time period at the aggregated level.  In this case, the economic translation of FEVD or 

CIRF using the aggregated form of data generating process becomes different from the original 

disaggregated data generating process.  In more detail, for the case of FEVD, an element �2�(ℎ) in FEVD is defined as the proportion of the h-step ahead forecast error variance of region 

r that is accounted for by the innovations in region s.  Since �� = ∑ ([B���B�r ∑ 3$�B�C���C�r ), 

innovations at sub periods t-i have different covariance structures.17  Thus, when we derive 

FEVD using the aggregated form of the data generating process, we are ignoring these 

differences, and same logic applies to CIRF.  For example, an innovation in January and one in 

March are treated as the same when we derive h-quarter ahead forecasting error variance 

decomposition with the assumption of the normality of ��. 

Similar problem occurs when we derive the data generating process for the spatially aggregated 

observations.  Following Arbia and Petrarca (2011), suppose G  is an S × R  aggregation 

matrix where 
�� = n  (each aggregated level spatial unit contains the same n number of 

disaggregated level units).18  Then, an aggregated form of the data generating process can be 

expressed as o$∗ = �o$��∗ + 3$∗  where o$∗ = �o$ , � = �[�′(���)��  and 3$∗ = �3$ .  If we 

assume approximate normality, the aggregated level error term will be expressed as 3$∗~(0, @�m) , as in Arbia and Petrarca (2011).  However, as a matter of fact, 3$∗  is a 

superposition of multivariate normal distributions, thus suffering the same problem as in the 

temporal aggregation case.  In other words, for example in our constructed regional economic 

system, FEVD or CIRF analysis with approximate normality assumption will treat a unit shock 

                                           
17

 For example, 3$��~�(0, �(m + [ + [�)(m + [ + [�)�). 
18

 For example, when aggregating two units into one aggregated level unit (n=2) where there are four spatial units, G =  1 1 0 00 0 1 1¡. 
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on peripheral region such as region #1 the same as a unit shock on the region located closer to 

the center such as region #34.19 

Since our objective is to see what we will observe at the aggregated level, we do not have to 

numerically derive the aggregated form of the data generating process.  Instead, we can 

simulate some coefficient structure and visualize FEVD and CIRF as the same fashion in section 

3.  In this manner, we can avoid the problem mentioned above. 

In order to visualize what will happen in FEVD and CIRF, another assumption that the shocks at 

disaggregated level are distributed evenly across the initial aggregated period has been made.
20

  

Thus, the economic meaning of FEVD at the aggregated level, for example, an element �2�(ℎ) 

in FEVD is defined as the proportion of the h-step ahead forecast error variance of region r that 

is accounted for by the same amount of innovations in region s at time t = 0, 1, … , n − 1 (∈ τ =0).  A similar logic also applies for CIRFs. 

With the above assumption, since the disaggregated level FEVD is as in equation (9), the 

aggregated level FEVD can be derived as in equation (10):
21

 

 �2�(ℎ) = ∑ (�£¤"¥�¦)§¥̈©ª∑ (�£¤"¥A"¥E¤�£)¥̈©ª         (9) 

where \2  is a R × 1 selection vector (where the r
th

 element=1 with zeros elsewhere) 

 �2�(«) = ∑ ∑ (�£¤"¥�¦)§¨¬¥©®ij©ª∑ ∑ (�£¤"¥A"¥E¤�£)¨¬¥©®ij©ª        (10) 

where « ∋ �ℎ, ℎ + 1, … , ℎ + @ − 1� 

 

For example, when aggregating a monthly data into a quarterly data, FEVD will be looking at 

12
th

 month for the monthly model, and 12~14 months for the quarterly model, as shown in figure 

4.  In this case, the one year ahead FEVD becomes a weighted average of 12~14 months ahead 

monthly level FEVD with three consecutive monthly shocks at the first three months.   

 

                                           
19

 More specifically, when a regional shock spills over to region sharing borders (rook contiguous), then region #1 

spills over to regions #2 and #33 whereas region #34 spills over to regions #2, #33, #35 and #66. 
20

 For example, aggregating at the quarterly interval, FEVD and CIRFs are calculated assuming that the same 

amounts of shocks are given for the first three months.  We can also simulate and visualize the case that shocks are 

unevenly distributed across within an aggregated time period, but since there are infinitely many cases of uneven 

distributions, and since even distribution is representative, only evenly distributed case is visualized here. 

21
 For more general case, as in equation (*), FEVD can be derived as �2�(ℎ) = ∑ (�£¤°¥±�¦)§¥̈©ª∑ (�£¤°¥²°¥¤�£)¥̈©ª .  Thus, a temporally 

aggregated version of FEVD should be �2�(«) = ∑ ∑ (�£¤°¥±�¦)§¨¬¥©®ij©ª∑ ∑ (�£¤°¥²°¥¤�£)¨¬¥©®ij©ª . 



18 

 

Figure 4.  Conceptual Comparison of One-year-ahead FEVD of Monthly and Quarterly Data 

Monthly Data 

shock       12-step ahead = 1 year ahead 

↓            ↑    

t=0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

 

Quarterly Data 

shock       4-step ahead = 1 year ahead 

↓ ↓ ↓          ↑ ↑ ↑  

t=0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

 

CIRFs can be derived using the same logic.
22

 

Similarly, from equation (9), a spatially aggregated version of FEVD can be expressed as 

equation (11):
23

 

 �&³(ℎ) = ∑ (�¤́ "¥�µ)§¥̈©ª∑ (�¤́ "¥A"¥E¤�´)¥̈©ª        (11) 

 

where 8 ?@  ¶ are aggregated spatial units, thus \&  ?@  \³ are R × 1 selection vectors where 

any r
th

 and s
th

  elements that belong to R and S respectively are ones and zeros elsewhere. 

For the temporal aggregation, the disaggregated level (first level) observations are aggregated 

with 2 (second level) ~ 12 (twelfth level) periods of time.  For the spatial aggregation, the 

                                           
22

 If there is a unit shock to region r, h-step ahead CIRF can be calculated as 92(ℎ) = ∑ [·\2·̧�r  or in a more 

general case as in equation (*), 92(ℎ) = ∑ �·¹\2·̧�r .  Thus, a temporally aggregated version of CIRF can be 

expressed as 92(«) = ∑ ∑ [·\2¸Sº·�r���º�r , or from equation (*),92(«) = ∑ ∑ �·¹\2¸Sº·�r���º�r .  However, in this case, 

in order to see the response of unit shock on the aggregated spatial unit, the amount of shock should be 1/@, i.e., the 

selection vector \2 is composed of 1/@ for its r-th element, zeros elsewhere. 
23

 Likewise before, more generalized version of the spatially aggregated version of FEVD can be expressed as �&³(ℎ) = ∑ (� ¤́ °¥±�µ)§¥̈©ª∑ (� ¤́ °¥²°¥¤�´)¥̈©ª .  CIRFs can also be expressed as 9&(ℎ) = ∑ [·\&·̧�r  or for more general case (from 

equation (*)), 9&(ℎ) = ∑ �·¹\&·̧�r .  In the case of CIRFs, the selection vectors also should be �� , (@ F^ =ℎ\ @�¼N\5 `. �@F=^ =ℎ?= N\e`@Q =` ?QQ5\Q?=\  e\_\e `. ? ^;?=F?e �@F=) for the elements that belong 

to 8, zeros elsewhere. 
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disaggregated level (first level) observations are aggregated by four regional units at each level, 

up to the fifth level where the number of regional units is only four. 

 

4.3 Change of the Neighborhood Portion with Aggregation – FEVD results 

When we disaggregate the sources of the variances of regional activities into neighborhood and 

its own (and region common for the multi-level structure) innovations, on average, the 

neighborhood portion increases with more temporal aggregation, but it decreases with more 

spatial aggregation.  However, in a multi-level structure regional economy, when the effect 

from the region common factor is relatively large, resembling the real world case, the 

neighborhood portion does not monotonically increase with the temporal aggregation: the 

neighborhood portion increased up to a certain level aggregation, and then it decreased 

afterwards. 

The FEVDs with various values of coefficients are calculated.  In equation (8), the 

autoregressive coefficient for region common factor is set to be 0.2 (?z,z = 0.2), and the effect 

from the region common factor is set to be 0.15 (�?B,z = 0.15 | F = 1, … , 1024�) .  The 

autoregressive coefficient of regions own is set to be 0.1 (�?B,B = 0.1 | F = 1, … , 1024�).  Each 

regional unit is assumed to be affected by its neighbors sharing common borders (rook 

contiguous), and various values of the effects are used, from 0.04~0.22 for the positive 

neighborhood effects, and -0.04~-0.22 for the negative neighborhood effects.
24

 

The FEVDs of individual regional units vary a great deal depending on their locations; thus, it is 

not appropriate to try to find a specific pattern related to the change of the scale of units by 

looking at the individual level regional units.
25

  However, when we average out our 

observations, we can see a clear pattern.  The results for the temporal aggregations are 

presented in figure 5.
26

 

  

                                           
24

 In other words, the coefficients for those regions sharing borders are assigned with values ranging from -0.04~-

0.22 & 0.04~0.22.  For the neighborhood effect values bigger than 0.22 or less than -0.22 are not tried here because 

they are spatially non-stationary.  Other values of autoregressive coefficient for region common factor, effect from 

the region common factor and autoregressive coefficient of regions own are also tried, but not presented here, 

because the implications drawn from the results are same. 
25

 As it is already shown in the real world data example, the portion of neighborhood effect varies depending on the 

region.  For our constructed regional economy, the variance of a region located at the border has larger portion of 

its own innovations. 
26

 The results do not change much when the neighborhood coefficients are negative. Appendix 6 provides the results. 
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Figure 5.   One-year-ahead Forecast Error Variance Decomposition with Different Temporal 

Aggregation Level - Positive Neighborhood Effect 

Multi-level Structure Single-level Structure 
Variance from Neighbors 
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Regional Factor = 0.1 
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Overall, both in multi-level structure economies and in single-level structure economies, 

regardless of whether the neighborhood effects are negative or positive, the portion of the 

neighborhood, or the amount of spillovers, increase with the level of aggregation, but the speed 

of increase decreases with the aggregation level.  However, for the multi-level structure 

economy with a large neighborhood effect (in this case, 0.22), the spillover decreased after some 

level of aggregation (in this case, fourth level). 

This difference in the trend of neighborhood portion, or the amount of spillover in the single-

level economy and in the multi-level economy, is due to the existence of the region common 

component.  In a single-level structure model, the spillover effects are propagating across 

multiple regional units and grow rapidly over time, whereas the autoregressive effect (?B,B) 
remains in a single region, thus growing at a slower rate.  Thus, the portion of the neighborhood 

innovation becomes larger with the temporal aggregations.
27

  However, in a multi-level 

structure economy, since the region common innovation and the neighborhood innovations are 

both propagating across multiple regions, depending on their relative importance, the 

neighborhood portion decreases after a certain level of aggregation.  For example, as shown in 

figure 6, when the effect from the common factor is 0.09 (?B,z = 0.09), the neighborhood 

portion decreases after the eleventh level of aggregation, but when the effect from the common 

factor is 0.21 (?B,z = 0.21), the neighborhood portion decreases after the third level of temporal 

aggregation.  In sum, a larger value of the region common factor loading induced a more rapid 

decrease in the neighborhood portion.  Conclusively, in a multi-level structure economy, the 

neighborhood portion of the variance can decrease or increase depending on the aggregation 

level and the relative importance of the region common factor, whereas in a single-level structure 

economy, the neighborhood portion of variance only increases with the level of temporal 

aggregation.  Thus, at a more temporally aggregated observations, those researchers believing 

in the importance of the region common factor loadings will expect less spatial dependency, 

whereas those researchers not believing in the existence of region common factor will expect 

more spatial dependency. 

 

 

  

                                           
27

 This phenomenon also appears when we assign the autoregressive coefficients larger value such as ?B,B = 0.8. 
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Figure 6.   One-year-ahead FEVD with Different 

Temporal Aggregation Level 

- Different Common Factor Effects 

in Multi-level Economies 
Variance from Neighbors 

 
 

Variance from its own 

 
 

Variance from Region Common Factor 

  

This trend over temporal aggregation 

concords with the average trends found in 

the multi-level estimation results from the 

real world data in the previous section.  In 

the real world data, the portion of own 

factor decreased and that of common factor 

increased, generating the same results as 

those from our constructed regional 

economic system.  Also, the portion of 

neighborhood innovation decreased in the 

real world data exercise, implying that the 

region common factor occupies a larger 

portion of the regional variances.  On the 

contrary, for the single-level structure, it is 

hard to tell whether the constructed 

regional economic system and the real 

world exercise results are in agreement. 

Contrary to the temporal aggregations, 

spatial aggregation shows a monotonic 

decrease of the neighborhood portion 

regardless of whether the regional 

economy is a multi-level structure or a 

single-level structure.  As shown in figure 

7, regardless of our choice of the values for 

the neighborhood effects, the amount of 

spillover decreases monotonically.
28

 

 

 

 

 

 

 

 

* Neighborhood Effects are fixed at 0.22 

                                           
28

 The results do not change much when the neighborhood coefficients are negative. Appendix 7 provides the results. 
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Figure 7.  Twelve-step-ahead Forecast Error Variance Decomposition 

with Different Spatial Aggregation Level - Positive Neighborhood Effect 
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This monotonic decrease with the level of spatial aggregation is mainly due to the fact that our 

regional economic system is spatially stationary.  Since all the innovations are processed in a 

spatially stationary system, an effect of a local shock fades away with distance.  Thus, a shock 

once regarded as a neighborhood innovation can become an own innovation at a more 

aggregated level.  In other words, unlike the temporal aggregation exercise where the relative 

portions of sources of innovations depend on the speed of their propagation across regional units, 

the spatial aggregation exercise is comparable to watching the regional economic system with 

lenses with different focal lengths at the same time spot, as described in figure 8. 

 

Figure 8.   Example of Spatial CIRFs to a Local Shock with different levels of Aggregations 

Observation at the 

Disaggregated Level 

Observation at the 

2nd-level Aggregation 

Observation at the 

3rd-level Aggregation 

Observation at the 

4th-level Aggregation 

    

 

As shown in the above figure, at a disaggregated level, we see the cumulative response of a local 

shock at the most detailed precision, thus the responses around the innovation is categorized as 

neighborhood effect.  However, at the 4th-level aggregation, those neighborhood effects are 

mostly trapped inside the aggregated spatial unit, thus the neighborhood effect almost disappears.  

Relating this idea with FEVDs, with the assumption that the innovations are equally generated 

across the regions, only those local innovations located near the borderline of the aggregated 

spatial unit can penetrate into the neighboring aggregated spatial units.  In other words, as long 

as the regional economic system is spatially stationary, the spatial aggregation will result in less 

spillover effects. 

 

4.4 Portion of Negative Spillovers with Aggregation – CIRF results
29

 

Along with the amount of spillover effects, the sign of spillover effects is also assessed.  It is 

                                           
29

 CIRFs can be graphically visualized as a three-dimensional graph, as shown in figure 3 in previous section.  To 

avoid the boundary location problem when the shock is imposed on the edge of the country, it is assumed that the 

shock is positioned in the middle of the country, i.e., unit #496 for city level CIRF and units #463, #464, #495 and 

#496 for county level CIRF. 
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found that when regional units have a negative immediate effect, i.e., neighbors are exhibit 

negative coefficients in equation (8), then odd numbers of temporal aggregation increase the 

portion of the positive cumulative responses, but even numbers of temporal aggregation decrease 

the portion of the positive cumulative responses.  Regarding spatial aggregation, more 

aggregation reduced the portion of positive cumulative responses.  However, when the regional 

economic system is mixed with positive and negative effects, the portion of cumulative 

responses is nonlinear with respect to the level of aggregation. 

Even when the regional units are competing with their immediate neighbor, i.e., a positive unit 

shock produces negative impacts on the immediate neighbors, the next period response results in 

positive impacts on the immediate neighbor’s immediate neighbor.  This pattern continues 

throughout time; thus, when the impacts are propagated through the rook contiguous regional 

system, then the relative portion of negative cumulative response and that of positive cumulative 

response reverses with every another level of aggregation.  This pattern is shown in the first 

column of table 4 and in the first row of figure 9.  We can observe that with odd numbers of 

temporal aggregation, the number of positive CIRF increases, but with even numbers of temporal 

aggregation, the number of negative CIRF deceases. 

 

Table 4. 

Number of Positive CIRF / Number of Negative CIRF* with Different Temporal Aggregation Level 

 

Neighborhood 

Effect Sharing: 

Borders<0 Borders=0 Borders=-.05 Borders=.05 Borders=.05 Borders=.15 Borders<0 

Vertices=0 Vertices<0 Vertices=-.05 Vertices=-.05 Vertices=-.15 Vertices=-.05 Vertices>0 

disaggregated 0.8622 0.8622 0.6720 1.0250  1.0710 0.9184 1.0027 

2-periods 1.1480 1.1480 1.1901 1.0413  0.9650 1.0613 1.0024 

3-periods 0.8789 0.8789 0.7536 0.9855  1.0275 1.0360 1.0021 

4-periods 1.1211 1.0000 1.0645 1.0000  0.9845 1.0813 1.0000 

5-periods 0.9082 1.0000 0.8517 1.0277  1.0118 1.0521 1.0000 

6-periods 1.0854 1.0000 1.0645 1.0000  0.9692 1.0813 1.0000 

7-periods 0.9321 1.0000 0.9069 0.9961  1.0157 1.0687 1.0000 

8-periods 1.0625 1.0000 1.0000 1.0000  1.0000 1.0480 1.0000 

9-periods 0.9490 1.0000 0.9357 0.9655  1.0000 1.0687 1.0000 

10-periods 1.0461 1.0000 0.9768 0.9922  1.0000 1.0480 1.0000 

11-periods 0.9621 1.0000 0.9542 0.9845  1.0000 1.1201 1.0000 

12-periods 1.0335 1.0000 0.9692 1.0000  1.0000 1.1157 1.0000 

* 1-year head (assuming that the disaggregated level observations are monthly) CIRFs 
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Figure 9. # of positive CIRF / # of negative 1-year ahead CIRF in Temporal Aggregation Example 

 

Aggregating Odd Numbers of Periods Aggregating Even Numbers of Periods 

  
Neighborhood Effect: Negative from Borders, None from Vertices 

  
 

Neighborhood Effect: +0.05 from Borders, -0.05 from Vertices 

  
 

Neighborhood Effect: +0.05 from Borders, -0.15 from Vertices 

  
 

However, this monotonic trend cannot be found in other cases where regional units are mixed 

with competitive and complementary relationships, and even reversed in other cases (the third 

row of figure 9). 

Similar argument applies to the spatial aggregation case as well.  When the immediate 

neighborhood effects are all negative, then more spatial aggregation monotonically reduces the 

portion of the positive CIRFs.  However, if the regional system is mixed with positive and 

negative effects, this monotonic trend no longer exists (table 5). 

 

 

0.80

0.84

0.88

0.92

0.96

1.00

1 2 3 4 5 6

Aggregation Level

0.96

1.00

1.04

1.08

1.12

1.16

1 2 3 4 5 6

Aggregation Level

0.92

0.96

1.00

1.04

1 2 3 4 5 6

Aggregation Level
0.96

1.00

1.04

1.08

1 2 3 4 5 6

Aggregation Level

0.96

1.00

1.04

1.08

1 2 3 4 5 6

Aggregation Level
0.92

0.96

1.00

1.04

1 2 3 4 5 6

Aggregation Level



27 

 

Table 5.Number of Positive CIRF / Number of Negative CIRF* with Different Spatial Aggregation Level 

 

Neighborhood 

Effect Sharing: 

Borders<0 Borders=0 Borders=-.05 Borders=.05 Borders=.05 Borders=.15 Borders<0 

Vertices=0 Vertices<0 Vertices=-.05 Vertices=-.05 Vertices=-.15 Vertices=-.05 Vertices>0 

City 1.1736 1.1736  1.4414  1.0032  0.9167 0.9531  1.0032 

County 3.5417 0.0060  0.3203  0.4569  0.0060 1.6406  2.0179 

Group 2.0833 0.0208  0.2250  0.2250  0.0208 1.4500  3.0833 

State 1.5000 0.0667  0.1429  0.2308  0.0667 1.0000  1.6667 

Division 1.0000 0.3333  0.3333  0.3333  0.3333 3.0000  1.0000 

* 12-step ahead CIRFs 

Conclusively, regarding CIRF, it is most likely that we cannot find any pattern regarding the 

numbers of positive/negative spillover effects. 

 

5.  Conclusion 

Table 6 summarizes the results from the previous sections.  In a single-level structure model, 

the FEVD results on different levels of temporal aggregations are opposite to Gosset’s prediction 

that a larger scale of unit will reduce the spatial correlation.  However, even though it could 

happen under certain conditions, such as large region common factor loadings on regional 

activities, a multi-level structure is in agreement with the prediction.  Spatial aggregation results 

are also in in concordance with the prediction.  If the region common factor plays the most 

important role in regional economic activities, as is the case of the regional employment series 

exercise in section 3, it can be concluded that we will observe less spillovers with larger scale of 

units. 

 

Table 6.     Summary Table 

 Real World Data Exercise Exercise on the Constructed Regional Economy 

 

 

 

 

 

 

Multi-level 

Structure 

 

Temporal aggregation decreases the 

neighborhood portion of FEVD 

 

 

 

 

Spatial Aggregation decreases the 

neighborhood portion of FEVD 

 

No specific pattern found in terms of the relative 

portion of positive signs to the negative signs of 

CIRFs 

 

 

When region common factor loading is large, 

neighborhood portion of FEVD decreases 

after a certain level of temporal aggregation. 
Otherwise, temporal aggregation decreases the 

neighborhood portion of FEVD 

 

Spatial Aggregation decreases the 

neighborhood portion of FEVD 

 

No specific pattern found in terms of the relative 

portion of positive signs to the negative signs of 

CIRFs, if the regional relationship is mixed with 

positive and negative neighborhood effects. 

 

 

 

 

 

No specific pattern found in the neighborhood 

portion of FEVD in terms of temporal 

 

Temporal aggregation increases the 

neighborhood portion of FEVD 
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Single-level 

Structure 

aggregation 

 

No specific pattern found in the neighborhood 

portion of FEVD in terms of spatial aggregation 

 

No specific pattern found in terms of the relative 

portion of positive signs to the negative signs of 

CIRFs 

 

 

 

Spatial Aggregation decreases the neighborhood 

portion of FEVD 

 

No specific pattern found in terms of the relative 

portion of positive signs to the negative signs of 

CIRFs, if the regional relationship is mixed with 

positive and negative neighborhood effects. 

 

 

However, there are some limitations with our FEVD analysis on the constructed regional 

economic system.  Most importantly, the neighborhood portion of total variance is decreasing 

with the level of spatial aggregation, but this is more or less due to the fact that the regional 

economic system is spatially stationary, and that the neighborhood effects are geographically 

constrained within neighboring units.  In other words, since the effect of an innovation fades 

away more quickly with distance, and the spatial aggregation binds regional units located close 

to each other, the spillover parts of innovation should be reduced with larger scale of spatial units 

that results in increasing the distance from regional units.  Thus, if the neighborhood effect is 

determined not by geographical closeness but by trade linkage, the spatial aggregation based on 

geographical location will not necessarily produce an inverse relationship between the 

neighborhood portion of FEVD and the level of spatial aggregation.  Nevertheless, in many 

cases, we could expect smaller spillover effects with larger spatial scale because most human 

activities are physically constrained by their geographical locations. 

Additional limitations relate to the relative sizes of regional units, the regional differences in the 

region common factor loadings, closed economy assumptions, and so forth, but the how the 

relaxation of these strong assumptions will change the conclusions of this paper remains for the 

future studies. 
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