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ABSTRACT: This paper examines the role of academic and private R&D 

spending in the frame of a knowledge production function estimated across 3,109 

US counties. We distinguish the role of local, face-to-face, knowledge spillovers 

that are determined by geographical proximity from distant spillovers captured by 

a matrix of patent creation-citation flows. The advantage of the latter matrix is its 

capacity to capture the direction of the spillovers. We control for the spatial 

heterogeneity between metropolitan and non-metropolitan counties as well as 

between states. Our empirical results show that spillovers due to private 

knowledge contribute to higher returns in metropolitan counties than in non-

metropolitan regions. On the other hand, knowledge created in the academia leads 

to spillovers displaying spatially homogeneous returns. Our results imply that 

future innovation policies need to grasp more fully the role of distant knowledge 

spillovers, especially those generated in the academia, and recognize better the 

presence of heterogeneity in the sources and location of knowledge creation.  

Keywords: Knowledge production function, knowledge spillovers, patent citation 

flows, spatial econometrics 

JEL classifications: C21, O18, O31, R11 
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Introduction 

Innovation and technological change are important sources of economic growth 

(Audretsch and Feldman 1996). The literature that investigates their creation has mostly focused 

at the firm level (Jaffe 1986; Blundell et al. 1995; Cincera 1997; Gurmu and Perez-Sebastian 

2008) in the framework of a knowledge production function à la Griliches (1979). Since the 

contribution of Jaffe (1989), many studies have recognized knowledge spillovers in a region, 

thereby shifting the unit of observation from the firm level to a geographical unit (Audretsch and 

Feldman 2004). However, even in the latter case, the empirical identification and measurement 

of knowledge spillovers is still a challenge.  

Traditionally, knowledge spillovers have been assumed to be localized (Moreno and 

Miguélez 2012). Since all new knowledge produced cannot be appropriated totally, and non-

appropriable knowledge has the properties of public goods, neighbors of a knowledge source can 

access new knowledge via face-to-face interactions based on close proximity (Jaffe 1986; Jaffe 

et al. 1993; Audretsch and Feldman 1996; Rodríguez-Pose 2001; Sonn and Storper 2008). 

However, empirical evidence suggests that knowledge spillovers may well reach beyond the 

boundaries of the locality under study. For instance, Anselin et al. (1997) find that the spillovers 

of university research flow across nearby regions. Since the previous contribution, several 

studies have used spatial econometric techniques to model and measure interregional knowledge 

spillovers (Anselin et al. 2000; Bode 2004; Parent and LeSage 2008; Autant-Bernard and LeSage 

2011). These studies assume that all spillovers are measured by the geographical proximity 

embedded in the definition of a spatial weight matrix. But this is a somewhat unrealistic 

assumption to make considering that knowledge flows are not limited by physical vicinity. For 
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instance, several studies on biotech firms have demonstrated that the knowledge sources that 

contribute to a firm’s innovation can be distant (Gertler and Levitte 2005; Gittelman 2007). 

In addition, the traditional distance-based weight matrix does not account for the 

direction of the flows. These two issues have motivated several contributions to base the 

measurement of knowledge externalities on patent citation data. Johnson et al. (2006) and Sonn 

and Storper (2008) explore the geographical patterns of local and distant knowledge flows while 

Maurseth and Verspagen (2002), Fischer et al. (2006) and Maggioni et al. (2010) investigate 

econometrically the factors at the origin of knowledge spillovers based on patent citation data. 

Mancusi (2008) does it too but across OECD countries instead of regional economies. However, 

to our knowledge, only Peri (2005) and Ponds et al. (2010) have measured distant knowledge 

spillovers with a patent creation-citation matrix and a patent co-publication matrix respectively 

in a regional knowledge production function. The former contribution focuses on the regions of 

Western Europe as well as on the US states and Canadian provinces for the period of 1975-1996. 

While Peri (2005) relies on USPTO data to capture knowledge spillovers, like we do, we offer a 

county-level approach that provides more details about these flows and we update the analysis to 

a more recent period. Ponds et al. (2010) focus on the regions of the Netherlands and measure 

knowledge flows as evidence of interregional collaboration between industry and the academia. 

However, none of the previous two contributions deal simultaneously with both private sector 

and university-induced knowledge spillovers in their model. Also, they disregard the possible 

overlap between localized and distant knowledge spillovers, which could lead to double counting. 

We remedy to these problems in this paper. 

In addition, although many spatial econometric studies focus on interregional knowledge 

spillovers (Anselin et al. 1997; Bode 2004), the role of intra-regional spillovers is rarely 
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explicitly explored in the literature. Their level depends on a set of cultural, institutional, and 

economic conditions such as the region’s sectoral specialization or diversity (Feldman and 

Audretsch 1999; Karlsson and Gråsjö 2014), close links between business, academic, and 

government sectors (Asheim and Isaksen 2002; Asheim and Coenen 2005; Greunz 2005) among 

others. In order to avoid hand-picking some regional characteristics to control for intra-regional 

spillovers, we examine their role explicitly by relying on within-region patent citation flows and 

remedy to a significant gap in the literature. 

Given the aforementioned background, the object of the current paper is to examine the 

role of localized and distant knowledge spillovers on knowledge creation. For this purpose, we 

adopt a knowledge production function at the US county level. Previous contributions on the US 

usually use states and Metropolitan Statistical Areas (MSA) as the unit of observations (Anselin 

et al. 1997; Anselin et al. 2000; Peri 2005; Ó hUallacháin and Leslie 2007). However, states are 

too broad to measure localized knowledge spillovers (Audretsch and Feldman 2004) and solely 

working with MSAs results in a sample selection bias due to the omission of non-MSA regions. 

In addition, not all innovation takes place in MSAs. By using county-level data, this paper better 

reflects the role of localized knowledge spillovers and the large size of our sample allows us to 

investigate how our results vary between metropolitan and non-metropolitan counties. Compared 

to previous papers, this approach provides the opportunity to draw more accurate innovation 

policies. 

The remainder of the paper is composed as follows: Section 2 reviews the literature 

focusing on innovation and spatial knowledge spillovers. Section 3 describes our knowledge 

production function, its associated knowledge spillovers and presents the sources of our data. 
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The estimation results and their interpretation are reported in Section 4 while the last section 

closes the paper with concluding remarks. 

 

Literature Review 

 

Sources of Knowledge Spillovers 

 

Theoretically, knowledge spillovers are understood as localized phenomena and their 

intensity is assumed to depend on the degree of local specialization and diversity (Audretsch and 

Feldman 2004). Specialization allows firms to lower their transaction costs and facilitate 

communication between them due to Marshall-Arrow-Romer externalities (Marshall 1920; 

Arrow 1962; Romer 1986). As such, industrial specialization in a region promotes knowledge 

spillovers across nearby firms (Glaeser et al. 1992). On the other hand, Jacobs (1969) points out 

that diversity also plays an important role. Exchanging knowledge between firms and agents 

from various industries can complement their respective knowledge and lead to synergistic 

activities across industries, thereby promoting knowledge spillovers à la Jacobs. Thus, higher 

diversity of industries in a region is beneficial to promote innovative activities. Although these 

two processes rely on opposite levels of regional specialization, geographical proximity across 

firms is the essence of knowledge spillovers in both cases. 

However, if firms located nearby were to interact with each other only and combine local 

knowledge exclusively, the value of local knowledge would depreciate and eventually become 

useless (Moreno and Miguélez 2012). As a result, the region would become less innovative. For 

this reason, firms are continually searching for external knowledge sources outside of their local 
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knowledge pool (Rosenkopf and Almeida 2003). Trippl et al. (2009) provide evidence that 

external sources of knowledge are important in the Vienna software clusters. The case study of 

Asheim and Isaksen (2002) also finds that external contacts are important in the innovation 

process of Norwegian shipbuilding, mechanical engineering, and electronics industries. Gertler 

and Levitte (2005) demonstrate the role of distant knowledge sources in biotechnology 

innovation. Therefore, the sources of knowledge spillovers are not only limited to geographically 

close clusters, but also include distant actors. By developing global pipelines to benefit from 

remote knowledge sources, firms can stimulate knowledge flows and generate innovation growth 

(Maskell et al. 2006).  

 

Empirical Studies on the Extent of Knowledge Spillovers 

 

Although the sources of knowledge spillovers can come from geographically remote 

partners as well as from partners clustered locally, most empirical studies define the extent of 

knowledge spillovers on geographical proximity. Jaffe (1989) is the first to have shifted the 

observation unit of the knowledge production function from the firm level to the geographical 

unit (Audretsch and Feldman 2004). He measures the coincidence between the location of a 

university and of industrial research activities within a state and uses his measurement as a proxy 

for knowledge spillovers due to academic research. His estimation results provide evidence of 

the existence of geographically mediated spillover, though their significance varies across 

technical areas. To our knowledge, Anselin et al. (1997) is the first empirical study that examines 

the existence of spillovers across US county boundaries. Based on spatial interaction theory, they 

use spatial econometric techniques to model interregional spillovers with various distance cut-
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offs. Their results show strong evidence of local spillovers of university research and private 

R&D across counties located within the same state or MSA. A few years later, Anselin et al. 

(2000) extend their previous work by relying on Lagrange Multiplier tests (Anselin et al. 1996) 

to decide whether spillovers should be modeled in the frame of a spatial lag model, where the 

dependent variable (knowledge output) is spatially lagged, or only through the spatial lag of 

university research and private R&D as done in Anselin et al. (1997). The results indicate that 

knowledge created within 50 miles and 75 miles from any MSA center plays a statistically 

significant role on the MSA’s innovation level. 

The spatial econometric study by Bode (2004) focuses on innovation across European 

regions. Based on the regions of western Germany, he models interregional knowledge spillovers 

using the spatial lag of the innovation output as well as of R&D employment, and checks the 

robustness of his results to several definitions of a spatial weight matrix. Some are distance-

based weight matrices (with a distance cut-off or k-nearest neighbors number) while others are 

contiguity-based. The idea is to circumvent the lack of precise knowledge on the actual spatial 

extent of spillovers. Overall the results indicate the significant presence of knowledge spillovers, 

however their magnitude varies with the weight matrix and the knowledge spillover variables. 

More recently, Autant-Bernard and LeSage (2011) examine knowledge spillovers across French 

metropolitan areas. They consider private and public R&D inputs across 11 industrial sectors. 

Compared to previous works, their main contribution consists in providing the average direct and 

indirect effects of their spatial model (a spatial Durbin model) following the decomposition 

method brought to the fore by LeSage and Pace (2009). Their results indicate that both effects 

are significant, i.e. public and private investments in R&D in one locality will promote 

innovation locally (direct effect) as well as in other localities (indirect effects or spillovers).   
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Whether focusing on Europe or the US, all aforementioned studies rely on geographical 

proximity for their definition of the catchment area of knowledge spillovers, yet empirical 

evidence shows that proximity is not the only element at the origin of knowledge spillovers 

(Gertler and Levitte 2005; Gittelman 2007; Trippl et al. 2009). As a result, Parent and LeSage 

(2008) re-explore the definition of potential technological proximity defined by Jaffe (1989) and 

put an emphasis on the idea that (European) regions with similar research activity and production 

technology would better absorb the knowledge of their technological partners. The level of 

regional technological similarity they measure provides a weighting scheme that they apply on 

various spatial weight matrix specifications based on geographical proximity as well as 

transportation or technological proximity. The latter definition is innovative in the sense that 

proximity can be asymmetric within any pair of regions and proves statistically to improve the 

model fit compared to other matrix specifications. However, their approach does not directly 

measure the role of actual spillovers on knowledge creation because they rely on a proxy of 

actual knowledge flows and choose to model spatial dependence solely through spatially 

structured random effects.  

In the regional knowledge production function literature, few studies pay close attention 

to distant knowledge spillovers. Exceptions include Peri (2005) who models distant knowledge 

spillovers based on patent citation across 147 subnational regions of western Europe and North 

America. Ponds et al. (2010) track how universities and private companies located in different 

regions of the Netherlands collaborate and file patents. Modeling distant knowledge flows based 

on patent citation patterns is mainly seen in the spatial interaction literature (Maurseth and 

Verspagen 2002; Fischer et al. 2006; Maggioni et al. 2010). Its results conclude that interregional 

knowledge flows not only depend on geographical proximity but also on technological proximity. 
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In addition, regional knowledge production studies rarely specify the level of intra-

regional knowledge spillovers as an input variable. They control for several region-specific 

conditions such as sectoral specialization or diversity that can be at the origin of intra-regional 

knowledge spillovers (Feldman and Audretsch 1999; Karlsson and Gråsjö 2014) but so do 

several other variables. Examples seen in the literature include, among others, close links 

between actors of innovation (Greunz 2005) and the regional culture and institutional 

environment (Asheim and Isaksen 2002; Asheim and Coenen 2005). The Netherlands 

Organization for Applied Scientific Research (TNO) and the Fraunhofer Institute in Germany are 

examples of investments aiming at developing intra-regional spillovers (Ponds et al. 2010). 

Instead of hand-picking regional characteristics controlling for intra-regional knowledge 

spillovers, we prefer to model them directly through the level of intra-regional citation flows. 

 

Empirical Model and Data 

 

Regional Knowledge Production Function 

 

Our starting point is the knowledge production function framework as defined in 

Griliches (1979). It assumes that a Cobb-Douglas functional form fits the relationship between 

innovation output and inputs. Since we adopt a regional knowledge production at the US county-

level, input and output variables are aggregated values by county. Our sample is composed of the 

3,109 continental US counties as defined in the 2000 US Census. We exclude the counties of 

Alaska, Hawaii, and of other islands because of their remoteness.  
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As a proxy for innovation output, we use the total number of utility patent applications 

averaged over 2003-2005 (Patent). The advantage of averaging over 3 years is to mitigate the 

effects of annual fluctuations in patent applications (Ó hUallacháin and Leslie 2007). Previous 

studies adopt the number of granted utility patents (Bode 2004; Parent and LeSage 2008; Autant-

Bernard and LeSage 2011), but we prefer the patent applications as in Cincera (1997) and 

Ramani et al. (2008). Since grants often take years of review before an award is made, the year 

when the application for a patent is made is closer to the time knowledge is created, i.e. when 

innovation takes place. In addition, the average time lag between application and award can vary 

from one technology to the other. Since we focus on all technologies rather than a specific one, 

patent applications are a better proxy for innovation output in our case. Patent application data 

comes from the US Patent and Trademark Office (USPTO 2010). The dataset has been used by 

Jaffe and Lerner (2004), Crescenzi et al. (2007), and Sonn and Park (2011).  

In order to allocate patent applications geographically, the addresses of patent assignees 

or patent inventors are available; however, both types of addresses have their own shortcomings. 

Since patents of a large company are filed by the headquarter of the company (Fischer and Varga 

2006), using the address of an assignee may cause a biased geographical distribution of 

knowledge creation. The addresses of inventors tell us where they live but not whether they 

commute to another county to work. Although both options present a potential geographical 

mismatch, we believe the former may lead to a more serious bias because the majority of patents 

are filed by large companies. For this reason, we use the inventor’s address for the geographical 

allocation of patents, and since a patent is usually credited to several inventors, we rely on the 

fractional counting method suggested by Jaffe et al. (1993) to allocate patents geographically. 

For instance, for any one patent with N inventors, 1/N fraction of the patent is allocated to each 
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inventor. Then, the fractional patents are aggregated by county according to where the inventors 

are located so that they lead to rational, not integer, numbers. Finally, we use geocoding to match 

each inventor to one of the US continental counties based on the 2000 US Census. As a result, 

the level of knowledge creation in each county i is modeled as follows: 

 

      𝑙𝑛𝑷𝒂𝒕𝒆𝒏𝒕𝒊 =  𝛽0 + 𝛽1𝑙𝑛𝑷𝒓𝒊𝒗𝒂𝒕𝒆𝒊 + 𝛽2𝑙𝑛𝑼𝒏𝒊𝒗𝒊 + 𝛽3𝑙𝑛𝑮𝒓𝒂𝒅𝒖𝒂𝒕𝒆𝒊 + 𝛽4𝑙𝑛𝑫𝒊𝒗𝒆𝒓𝒔𝒊𝒕𝒚𝒊 +

𝛽5𝑙𝑛𝑳𝒂𝒓𝒈𝒆𝒊 + 𝛽6𝑙𝑛𝑰𝒏𝒕𝒓𝒂𝒊 + 𝛽7 ln 𝑳𝒐𝒄𝒂𝒍. 𝑷𝒓𝒊𝒗𝒂𝒕𝒆𝒊 + 𝛽8 ln 𝑳𝒐𝒄𝒂𝒍. 𝑼𝒏𝒊𝒗𝒊 + 

 𝛽9𝑙𝑛𝑫𝒊𝒔𝒕𝒂𝒏𝒕. 𝑷𝒓𝒊𝒗𝒂𝒕𝒆𝒊 + 𝛽10𝑙𝑛𝑫𝒊𝒔𝒕𝒂𝒏𝒕. 𝑼𝒏𝒊𝒗𝒊 + 𝛽11𝑙𝑛𝑺𝒊𝒛𝒆𝒊+ ∑ 𝛿𝑖𝑺𝒕𝒂𝒕𝒆𝑖
48
𝑖=1 + 𝜺𝒊 (1) 

 

The stock of knowledge is one of the principal determinants of knowledge production. 

Traditionally in the literature, the current level of knowledge stock is approximated by lag 

polynomials of R&D expenditures (Griliches 1979). But since R&D expenditures take time to 

produce any innovational output and they depreciate over time (Griliches 1992), the stock of 

knowledge is often calculated on past R&D expenditures by using the perpetual inventory 

method coupled with a pre-defined annual depreciation rate (e.g. Hollanders and ter Weel 2002; 

Hu et al. 2005; Klaassen et al. 2005; Mancusi 2008). Private and university research laboratories 

are the main institution of innovation, as such we specify the private and academic knowledge 

stocks separately. This classification is commonly used in the literature, especially in the US 

(Anselin et al. 1997; Acs et al. 2002; Ó hUallacháin and Leslie 2007). When it comes to the 

average annual depreciation rate of knowledge stock, Fischer et al. (2009) use 12% while 

Hollanders and ter Weel (2002), Hu et al. (2005), Okubo et al. (2006), and Mancusi (2008) adopt 

15%. Here we also use a 15% depreciation rate.
1
 One implication is that R&D expenditures have 

less than 1% of their original values after a period of eight years. Another motivation for the time 
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difference between R&D investment and new knowledge creation is the alleviation of the 

potential endogeneity of such investments (Ó hUallacháin and Leslie 2007). As a result, we 

estimate the models with inputs measured in 2000, which corresponds to the most recent 

complete survey across US counties before 2003, and R&D expenditures lagged up to eight 

years in the past, i.e. 1995-2002. Before applying the perpetual inventory method, R&D 

expenditures are expressed in their 2003 dollar values using the Producer Price Index of the US 

Bureau of Labor Statistics.  

The private expenditure data (Private) comes from Standard and Poor's COMPUSTAT 

database which provides annual and monthly data for more than 14,650 active U.S. and 

Canadian companies (Standard and Poor’s, 2001). COMPUSTAT draws its R&D data from the 

documents of the Securities & Exchange Commission among other sources. We extract the R&D 

expenditures from COMPUSTAT for each fiscal year and allocate each company’s location to a 

county, so that private R&D expenditures can be distributed across counties. We should note that 

COMPUSTAT presents some shortcomings. Since it relies on information from the Securities & 

Exchange Commission, R&D expenditures of undocumented small companies, such as venture 

capitals, are not reflected in the defined variable of the current study. As such the level of R&D 

expenditures reported in some counties may be biased downward; however, it is the only 

available measure of county-level R&D expenditures to our knowledge and the same data and 

issues have been reported in Crescenzi et al. (2007) at the MSA-level. 

We collect the academic R&D expenditures (Univ) from the NSF Survey of R&D 

expenditures at universities and colleges. This data includes all academic R&D expenditures 

over $150,000 in each institution’s fiscal year. It covers all US universities and colleges granting 

a bachelor’s degree or higher in science or engineering as well as science and engineering 
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doctorate-granting institutions and historically black colleges (National Center for Science and 

Engineering Statistics 2013). We allocate the academic R&D expenditures across counties based 

on the address of these academic institutions. 

In addition to the knowledge stock variables, we specify several region-specific 

conditions. It is undeniable that the human capital acts as an input in the knowledge production 

function (Audretsch and Feldman 2004) and the positive impact of education on knowledge 

creation has been widely documented in the literature (Audretsch and Feldman 1996; Simon and 

Nardinelli 2002; Crescenzi et al. 2007; Storper and Scott 2009). As a result, we control for the 

level of human capital by relying on the share of the local population 25 years and over with a 

Graduate or professional degree from the 2000 US Census. (Graduate). 

In the literature, there is a continuous debate about whether Jacobs externalities (Jacobs 

1969) or Marshall-Arrow-Romer externalities (Marshall 1920; Arrow 1962; Romer 1986), in 

other words diversity vs. specialization, matter the most for the creation of economic knowledge. 

Glaeser et al. (1992) and Fung and Chow (2002) are in favor of diversity, but Jaffe (1986) and 

Henderson (2003) support specialization. In order to control for the relative level of diversity or 

specialization in a county, we use an index variable of the relative sectoral diversity of 

employment in each county (Diversity). Formally, our indicator is the index proposed by 

Duranton and Puga (2000) that we report in Equation (2) below. Sij represents the share of 

employment of industry j in county i, while Sj is the share of industry j in national employment. 

The variable is calculated on the basis of employment classified across the 13 industry system 

developed for the 2000 US Census. 

 

            𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦𝑖 = 1/ ∑ |𝑠𝑖𝑗 − 𝑠𝑗|𝑗              (2) 
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According to Anselin et al. (1997), smaller firms are more likely to be innovative than 

larger ones. Large firms spend huge amounts in R&D and exploit created knowledge in their 

own laboratories. In addition, since large firms have a larger influence on the local labor pool 

(Acs and Armington 2004), the level of agglomeration and ultimately of economic knowledge 

that results from their presence may be greater. Contrastingly, small firms spend relatively small 

R&D investment, but they have a comparative advantage with respect to exploiting knowledge 

spillovers from public institutes such as university laboratories (Acs et al. 1994). Thus small 

firms could be more efficient at innovating than large firms. In order to shed light on the actual 

influence of firm size on innovation, we measure the share of firms with at least 500 employees 

(Large)
2
. Relevant data come from the 2000 County Business Patterns. Last but not least, we 

control for the differences in the economic size of the US counties by including their number of 

employees (Size) as in Bode (2004).  

 

Knowledge Spillovers 

 

The literature recognizes knowledge spillovers as another important factor at the origin of 

knowledge creation (Jaffe et al. 1993; Audretsch and Feldman 1996). However, most empirical 

studies rely on proximity-based interregional knowledge spillovers only (Anselin et al. 1997; 

Anselin et al. 2000; Bode 2004; Autant-Bernard and LeSage 2011). We use a similar 

specification in this paper but we complement it with distant interregional knowledge spillovers 

and intra-regional knowledge spillovers. One common concern is whether contemporary or past 

patents should be used as a proxy variable for interregional knowledge spillovers (Bode 2004, 
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47-49). If we assume knowledge diffusion takes a short time, contemporary patents could be 

used as knowledge spillovers, hence leading to a spatial lag model (LeSage and Pace 2009). 

However, since our data is aggregated over all technologies of which speed of knowledge 

diffusion varies, the assumption of rapid knowledge diffusion proxied by contemporary patents 

may be too strong. Alternatively, building knowledge spillovers on past patents leads to biased 

estimates because of endogeneity as pointed out by Bode (2004). For these reasons, we find it 

more appropriate to use the neighbor regions’ knowledge stock (the sum of depreciated R&D 

expenditures over 8 years) as a proxy for knowledge spillovers. 

Localized interregional knowledge spillovers are based on geographical proximity. They 

represent the diffusion of tacit knowledge between researchers that takes place through face-to-

face interactions (Bode 2004). As such a certain distance cut-off based on regular commuting 

patterns is often used to specify the spatial extent of face-to-face interactions. Anselin et al. 

(1997, 431) and Acs et al. (2002, 1076) choose 50 and 75 miles based on the US commuting 

patterns and test whether their results are sensitive to the cut-offs.
3
 We adopt this approach here 

and use, in addition, an inverse exponential decay function to reflect that as distance between 

researchers increases, the intensity of interactions weakens because commuting costs go up. 

After setting various distance decay parameters, we chose the value 0.17 because it provides the 

best model fit.
4
 Equation (3) presents the formula of localized spillovers of private knowledge 

stock. In the Equation, 1(⋅) denotes the indicator function and 𝑑(𝑖, 𝑗) means the great circle 

distance between county i and j. The same formulation is applied to localized spillovers of 

academic knowledge stock. 

𝑳𝒐𝒄𝒂𝒍. 𝑷𝒓𝒊𝒗𝒂𝒕𝒆𝒊 = ∑ 𝑊𝑖𝑗 ⋅ 𝑃𝑟𝑖𝑣𝑎𝑡𝑒𝑗 ⋅ 1(𝑑(𝑖, 𝑗) ≤ 50 𝑚𝑖𝑙𝑒𝑠)𝑗≠𝑖  𝑤ℎ𝑒𝑟𝑒 𝑊𝑖𝑗 = 𝑒𝑥𝑝(−0.17 ⋅

𝑑(𝑖, 𝑗))  (3)   
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Face-to-face interactions may be the best channel to diffuse tacit knowledge in the 

physical vicinity delimited by commuting patterns, but previous empirical studies show that 

geographical proximity is not the only element at the origin of knowledge spillovers (Gertler and 

Levitte 2005; Gittelman 2007; Trippl et al. 2009; Ponds et al. 2010). More precisely, the spatial 

interaction modeling literature based on patent citation patterns (Maurseth and Verspagen 2002; 

Fischer et al. 2006; Maggioni et al. 2010) shows that interregional knowledge flows also depend 

on technological proximity. In order to shed light on the role of distant interregional knowledge 

spillover, we define a matrix of actual patent creation–citation flows. 

In order to construct this matrix, we rely on “The NBER US Patent Citation Data File” 

(Hall et al. 2001). It contains information about any utility patents granted between 1963 and 

1999 and reports the name of the 2,144,352 inventors as well as their respective addresses. A 

geocoding process was used to allocate patents across counties. More importantly, the database 

reports the citation records associated to each patent for the period of 1975 to 1999. It allows us 

to build a matrix that clearly stipulates the directionality of the spillovers which distance-based 

weight matrices cannot depict. 

Since our innovation output variable is calculated over the years 2003-2005, the citation 

flows of the 1970s and 1980s are too outdated to lead to knowledge creation in the 2000s. In 

addition, as for local R&D expenditure (see above), knowledge stock generated elsewhere 

depreciates over time. With a 15% depreciation rate it implies that less than 1% of the original 

value of knowledge remains after eight years. As such, we only use the citation flows from 1995-

1999 to make sure that the time difference between patents granted elsewhere (in the year 1995) 

and local patent applications (in the year 2003) is no more than eight years. The year of 1999 is 
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the last year available in “The NBER US Patent Citation Data File”. The time difference also 

helps alleviate potential endogeneity problems. 

We use the fractional counting method proposed by Jaffe et al. (1993) and Sonn and 

Storper (2008) to allocate these flows across counties of origin and destination. For example, a 

patent with D inventors citing another patent (previously) deposited by O inventors leads to 

(D×O) flows of information, each of which records 1/(D×O) fraction of the patent. Once these 

fractional flows are aggregated at the county-level, they represent (3,109×3,109) patent citation 

flows that we denote the P matrix. Figure 1 shows the flows of patent cited in Californian 

counties based on the P matrix. We show one state only as the figure would not be readable 

otherwise. The dots are the centroids of the counties. The grey and black lines represent the 

origin, destination and frequency of the patents cited by Californian counties. Darker lines 

indicate more frequent citations. This figure evidently shows the most important knowledge 

flows come from counties located in distant states.  

 

[FIGURE 1] 

 

Since we use the patent citation flows as the weighting element for the knowledge stock 

of “partner” regions, the share of patent flows from a knowledge creating county j to a 

knowledge receiving county i is used as presented in Equation (4). In the equation, 𝑃𝑖𝑗 denote the 

(i
th

, j
th

) element of the P matrix (i.e. the frequency of citations that flow from county j to i) and 

𝑀𝑖𝑗 is calculated by dividing 𝑃𝑖𝑗 by column sums of the P matrix. Using column standardization 

of the P matrix, we assume that a fixed portion of created knowledge in county j spills over to 

county i. As such, the distant knowledge spillover variables is interpreted as the (expected) 
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aggregated amount of knowledge imported from distant partner regions to a knowledge receiving 

region i. Since the localized spillover variables captures all knowledge spillovers within 50 or 75 

miles, we only count the distant spillovers that are taking place beyond 50 or 75 miles.  

 

𝑫𝒊𝒔𝒕𝒂𝒏𝒕. 𝑷𝒓𝒊𝒗𝒂𝒕𝒆𝒊 = ∑ 𝑀𝑖𝑗 ⋅ 𝑃𝑟𝑖𝑣𝑎𝑡𝑒𝑗 ⋅ 1(𝑑(𝑖, 𝑗) > 50 𝑚𝑖𝑙𝑒𝑠)𝑗≠𝑖  𝑤ℎ𝑒𝑟𝑒 𝑀𝑖𝑗 = 𝑃𝑖𝑗/ ∑ 𝑃𝑖𝑗  𝑖  (4) 

 

Finally, when it comes to the level of intra-regional knowledge spillovers, we rely on the 

share of patent flows as above. However, it is only for flows within the same county, i.e. 

𝑰𝒏𝒕𝒓𝒂𝒊 = 𝑃𝑖𝑖/ ∑ 𝑃𝑟𝑖 𝑟 . The level of intra-regional spillovers is measured separately from the 

previous two types of interregional spillovers so their individual roles can be evaluated. 

 

Spatial Heterogeneity 

 

In order to promote economic activity in a region, place-based economic policies are 

widely used across US states (Isserman 1993). Many states provide incentives such as R&D tax 

credits to encourage local firms to innovate (Moretti and Wilson 2014). Based on panel data over 

1981-2004, Wilson (2009) finds that state R&D incentives significantly increase in-state R&D 

expenditures. Several empirical studies (Hauptman and Roberts 1987; Jaffe and Palmer 1997; 

Pickman 1998) indicate also that environmental and social regulations influence R&D 

investments and innovation.
5
 Considering that each US state has different levels of incentives 

and regulations related to R&D, overlooking this institutional heterogeneity across states would 

lead to biased estimation results. As a result, we control for state-specific heterogeneity by using 

state dummy variables (State). 
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In addition, we assess the differences between metropolitan and non-metropolitan 

counties. Metropolitan areas are key places for knowledge production and spillovers (Feldman 

and Audretsch 1999; Fischer et al. 2001). Yet, we decide not to disregard non-metropolitan 

counties as their level of patenting and R&D expenses is not negligible and we want to avoid a 

sample selection bias. We control for this type of spatial heterogeneity with a dummy variable 

for the metropolitan counties (MSA) that interacts with the aforementioned knowledge input 

variables, with the exception of the control variable (Size) and the state dummies. Out of 3,109 

counties, 853 counties are defined as metropolitan counties according to the 2000 US Census. 

 

[TABLE 1] 

 

Table 1 presents several descriptive statistics of the knowledge production variables. The 

median of total patent in metropolitan counties is 24 times greater than that of non-metropolitan 

counties. We also find important differences in the levels of private and academic R&D, more so 

across metropolitan counties. The column entitled “# of zero” reports the total number of 

counties with a value of zero for each variable. It turns out that more than 90% of non-MSA 

counties do not have any R&D expenditures over 1995-2002 although most of them created 

patents over 2003-2005. These statistics confirm our expectations regarding the larger share of 

innovation activities that takes place in the metropolitan counties. In order to examine the degree 

of geographical concentration, we calculate a Moran’s I statistic (Cliff and Ord 1981) for each 

variable. The weight matrix for the statistic is constructed as in Equation (3) but implements a 

cut-off of 91 miles to ensure that each county has at least one neighbor. The results show that all 

our variables are significantly and positively clustered over space. We also note that the level of 
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intra-county citations and the academic R&D expenses are less concentrated than the rest of the 

variables. The table also reveals that interregional knowledge spillovers, whether they are based 

on geographical proximity or on citation flows, are much greater across MSA than non-MSA 

counties. A similar difference is found when focusing on the level of intra-county spillovers. The 

extent to which each type of spillover contributes to the production of knowledge is measured in 

the next section.  

 

Results 

Using the aforementioned variables, we estimate restricted and unrestricted (MSA vs. 

non-MSA heterogeneity) regional knowledge production functions. Since most variables have a 

minimum value of zero, we added one to all variables before using a log transformation. The 

OLS estimation results appear in Table 2. Models 1 and 2 are estimated without spatial 

heterogeneity whereas Models 3 and 4 include it. All the models display significant 

heteroskedasticity (Breusch and Pagan 1979). In addition, the Moran’s I statistics (Cliff and Ord 

1981) indicates the significant presence of spatial autocorrelation in the OLS residuals (inference 

is based on 499 random permutations). As a result, we control for both heteroskedasticity and 

spatial autocorrelation in the error terms by applying the nonparametric spatial HAC (SHAC) 

estimator to the calculation of the variance-covariance (VC) matrix of OLS estimator (Kelejian 

and Prucha 2007, 138-144). Equation (5) presents the formula of the SHAC estimator. In the 

equation, Σ̂ indicates the asymptotic SHAC VC matrix of OLS estimator. 𝑋𝑖𝑟 represents the (i
th

, 

r
th

) element of the explanatory matrix X and 휀�̂� is the i
th

 OLS residual. 𝑑𝑖𝑗  measures the great 

circle distance between counties i and j in miles. The results reported here are based on the 

Parzen kernel function with a bandwidth of 91 miles.
6
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Σ̂ = 𝑛(𝑋′𝑋)−1Ψ̂(𝑋′𝑋)−1 𝑎𝑛𝑑 𝑡ℎ𝑒 (𝑟𝑡ℎ, 𝑠𝑡ℎ) 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 Ψ̂ 𝑖𝑠 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 �̂�𝑟𝑠 =

1

𝑛
∑ ∑ 𝑋𝑖𝑟𝑋𝑗𝑠휀�̂�휀�̂�𝐾 (

𝑑𝑖𝑗

𝑑∗
)𝑛

𝑗=1
𝑛
𝑖=1  𝑤ℎ𝑒𝑟𝑒 𝐾(⋅) 𝑖𝑠 𝑎 𝑘𝑒𝑟𝑛𝑒𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ 𝑎 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ 𝑑∗    (5) 

 

[TABLE 2] 

 

Model 1 shows the estimation results using a 50 miles distance cut-off and assuming 

spatial homogeneity. Private and academic knowledge stocks have a positive influence on 

knowledge creation, although the former displays an elasticity that is nearly 2.4 times greater 

than the latter. The return on human capital is the largest among all variables. Sectoral diversity 

does not have a significant impact, which demonstrates that it is still difficult to conclude on the 

relative importance of diversity vs. specialization in the creation of knowledge. We find that a 

greater presence of large firms reduces knowledge creation. These results correspond to the 

argument of Acs et al. (1994) that small firms are more efficient at innovating than large ones. 

When it comes to knowledge spillovers, the intra-county citation flows display a positive and 

significant impact. The significance of localized interregional knowledge spillovers depends on 

their type. Private knowledge stock displays significant spillovers of which elasticity is around 

58% of the elasticity of a county’s own private knowledge stock. However, local academic 

spillovers do not have a significant role on knowledge production. The opposite result holds true 

for the distant interregional knowledge spillovers: only the academic spillovers have a significant 

role. A calculation of the overall return of private knowledge stock (own-region effect + 

interregional knowledge spillovers) indicates that it is 1.7 times greater than the overall effect of 

the academic knowledge stock. This result is smaller than the 2.2 ratio found in Anselin et al. 
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(1997, 436) although the comparison is not straightforward as the authors do not control for 

distant knowledge spillovers. 

All the above results are fairly consistent when we extend the distance cut-off of local 

knowledge spillovers to 75 miles (Model 2). As a result, we move on to Model 3 that relies on 

the same cut-off as Model 1 but includes spatial heterogeneity in the form of MSA vs. non-MSA 

counties as suggested by a significant Chow-test.
7
 We choose to use the non-MSA counties as 

the reference group so that the estimates for the MSA counties represent the difference with the 

reference group. Generally, the estimated returns display the same sign and significance level as 

their counterparts in Model 1 but their relative magnitude differs by county type. For example, in 

the non-MSA counties, private and academic knowledge stocks still influence knowledge 

creation positively and the former still has a greater elasticity than the latter (1.6 times greater 

whereas it was 2.4 in Model 1 where heterogeneity was not accounted for). Their returns do not 

show any statistical difference in the MSA counties; human capital still displays the greatest 

elasticity level and its return is 0.34 percentage points more productive in the MSA counties. 

Considering that the share of graduate degree holders is greater in MSA counties, these results 

confirm our expectations that the higher average level of human capital, the more rapid the 

growth of knowledge will be (Rauch 1993). We find that the presence of large firms still affects 

knowledge creation negatively. This result holds true both at the non-MSA and MSA level. 

Anselin et al. (1997) reach the same conclusion when working on the sample of MSAs.  

One result that has changed compared to Model 1 is the role of sectoral diversity. It has a 

negative impact on knowledge creation at the 5% significance level. Hence specialization is 

beneficial in non-metropolitan areas whereas its impact in MSA counties (-0.164+0.193=0.029) 

is not statistically different from zero (p-value=0.76, two-side test). As such it is impossible to 
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conclude whether sectoral specialization or diversity is more critical in metropolitan regions. 

When it comes to knowledge spillovers, the role of intra-regional spillovers as well as university 

interregional spillovers is spatially homogenous. Conversely, the interregional spillovers of 

private knowledge have a statistically different effect in the MSA counties. Indeed, both 

localized and distant spillovers of private knowledge stock have a greater effect in MSA counties. 

They are respectively 0.025 and 0.081 percentage points above what is expected in non-MSA 

counties.  

We believe that the differences in the returns of interregional spillovers generated in the 

academia vs. the private sector are due to by their respective learning cost and the absorptive 

capacity of recipient regions. External knowledge is more easily absorbed in recipient regions 

that have a larger stock of knowledge (Verspagen and Schoenmakers 2004), which provides a 

significant advantage to MSA counties over their non-MSA counterparts. In addition, Cohen and 

Levinthal (1990) point out that a recipient’s willingness to bear the cost associated to learning 

new knowledge is another important determinant of the absorptive capacity. Since universities 

share their knowledge with others at relatively low cost (Liu 2013), even for free in some cases, 

external innovators are able to access it relatively easily and without the need for a large 

absorptive capacity. On the other hand, private companies bear greater R&D costs, hence they 

are more reluctant to share new knowledge or they try to stay their sole proprietor for as long as 

possible. Therefore, recipient regions require a much greater absorptive capacity and/or need to 

afford higher cost to comprehend private knowledge. These elements explain the differences 

between the knowledge spillovers generated in the academia (their returns are spatially 

homogenous) and those due to the private sector (their returns are larger in MSA counties 

because they have a greater absorptive capacity than non-metropolitan counties). 
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For both Models 1 and 3, our results do not conclude to a significant presence of 

localized interregional spillovers of academic knowledge. It is a different outcome from many 

previous studies applied to the US (Jaffe 1989; Acs et al. 1994; Audretsch and Feldman 1996; 

Anselin et al. 1997; Ó hUallacháin and Leslie 2007). Re-estimating our models without long-

distance spillovers does not change this result, so the explanation is not found in previous papers 

displaying a missing variable bias. Instead, we believe that one possible explanation lies in our 

use of sectorally aggregated data. According to Anselin et al. (2000), the influence of local 

university spillovers vary by industry. They find that local university spillovers are found in the 

Electrics and the Instruments sectors but not in the Drugs/Chemicals nor Machinery sectors. 

Since aggregating sectoral innovation data attenuate heterogeneous characteristics of local 

spillovers across sectors, our results may not show strong evidence of localized academic 

spillovers.  

Another possible explanation is the spatial scale of our data. The spatial observations 

used in previous studies are the states (Jaffe 1989; Audretsch and Feldman 1996; Anselin et al. 

1997) and the MSAs (Anselin et al. 2000; Acs et al. 2002) which have a broader spatial extent 

than our county-level data. It is possible that the 50 miles distance cut-off is somewhat too 

narrow to capture the interregional spillovers of academic knowledge at the county-level as 

suggested by the sparseness of the geographical distribution of academic knowledge: 43% of the 

non-MSA counties and 16% of the MSA counties do not have a neighbor spending in academic 

R&D within 50 miles. When the cut-off increases to 75 miles, the shares reduce to 22% and 6% 

respectively. As such, we test the sensitivity of the interregional spillovers with a 75 miles 

distance cut-off and the results are reported in Model 4. The results are very consistent with 

those of Model 3; the only exception is the presence of positively significant localized spillovers 
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from academic knowledge although they are only weakly significant (at 10%). Their role is not 

different between MSA and non-MSA counties. 

  

[TABLE 3] 

 

We decided to estimate two additional model specifications to test the robustness of our 

results. The first one is a spatial Durbin error model (SDEM) and the second one is a Tobit 

model coupled with spatial error model (Tobit SEM)
 8

. The latter one allows us to explicitly 

control for the 438 counties that do not produce any patent. The SDEM is estimated by the 

generalized method of moments (GMM) estimator suggested by Kelejian and Prucha (2010) to 

control for heteroskedasticity. Models 5 and 6 in Table 3 show the estimation results of the 

SDEM with 50 and 75 miles distance cut-offs respectively. The spatial weight matrix of the 

SDEM is the W matrix with a 91 mile cut-off used when calculating the Moran’s I statistics in 

the OLS residuals. Significant spatial error autocorrelation is found for both distance cut-offs. 

All estimates and the model fit (adjusted R
2
, AIC, BIC) of the SDEM are very close to those of 

the OLS model.  

Before we estimate the Tobit SEM, we check the minimum value of the positive patents 

(0.0303) so that its log value (-3.496608) is used as the left limit to censor the zero patents. A 

robust maximum likelihood estimator (Greene 2011, 542-545) is used for its estimation. Models 

7 and 8 in Table 3 report the results for different distance cut-offs. Although the negative impact 

of sectoral diversity and the returns of human capital and localized spillovers of private R&D 

across MSA counties are not statistically significant, the results are qualitatively similar to OLS. 

In terms of model fit, OLS outperforms the Tobit SEM. As a result, the estimates of the SDEM 
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and Tobit SEM do not challenge the findings based on OLS coupled with SHAC estimator. In 

addition, the latter has the conceptual advantage over the other two of not being sensitive to the 

structure of the spatial weight matrix because SHAC does not make any assumption about the 

structure of the disturbances (Piras 2010).  

 

Conclusion 

Identification and measurement of knowledge spillovers have attracted a lot of attention 

in the knowledge production function literature over the last few decades. The majority of 

studies have modeled localized interregional knowledge spillovers based on pure geographical 

proximity as if face-to-face contacts are their only source. Although such contacts favor 

spillovers of tacit knowledge that should not be disregarded, we demonstrate in this paper that 

distant sources of knowledge can contribute even more to the creation of local knowledge. In 

order to capture these types of externalities, we build a matrix of the patent creation-citation 

flows across the 3,109 US counties that constitute our sample. Its advantage compared to 

geography-based matrices relies on its capacity to provide clearly the directionality of the 

knowledge flows. In addition, this paper examines explicitly the role of intra-regional knowledge 

spillovers as it has been largely ignored in past studies.  

Our estimation results indicate that all types of spillovers (intra-regional spillovers, 

localized and distant interregional spillovers) play a significant role in the production of 

knowledge, although their relative impact depends on their type, source, and location. Intra-

regional spillovers and distant interregional spillovers display greater returns than those based on 

localized spillovers. This implies that previous contributions that emphasized the latter type of 

knowledge spillovers were unable to fully capture their role in innovation. We find that localized 
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spillovers of private investment in R&D lead to greater returns than those due to university R&D. 

In addition, localized spillovers generated in the private sector display greater returns in MSA 

than non-MSA counties. Distant knowledge spillovers due to university R&D have a significant 

and spatially homogenous return across MSA and non-MSA counties, while those attributed to 

private R&D contribute to innovation in MSA regions only. Generally, the MSA counties are 

able to benefit more from the research performed elsewhere than their non-MSA counterparts. 

Our results lead to two policy implications. First, future innovation policies should 

recognize more fully the presence of spatial heterogeneity in the innovation process. Some 

contributions have highlighted the need to “regionalize” such policies (Stough 2003; Fritsch and 

Stephan 2005). Indeed, our estimation results show that if policy makers ignore the significant 

heterogeneity between metropolitan and non-metropolitan regions, the overall return of private 

investments in R&D will be over-estimated, especially in the non-MSA counties. This could 

encourage policy makers to systematically allocate their resources in support of R&D in the 

private sector instead of in the academia. Yet, our results show that the overall returns of private 

and university R&D are similar in non-MSA counties. In addition, it is only when spatial 

heterogeneity is included in our model that the significant role of distant knowledge spillovers of 

private knowledge can be revealed (in MSA counties only). Some metropolitan regions have 

become a hub of global knowledge (Maskell et al. 2006), hence the lack of consideration for 

distant knowledge spillovers can overemphasize the importance of localized private R&D 

interactions and lead to suboptimal innovation policies. 

Second, the role of universities as an engine of both regional and national innovation is 

confirmed in our results and supports previous contributions (Jaffe 1989; Anselin et al. 2000; 

Ponds et al. 2010). While the returns in R&D in the academia are not as high as in the private 
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sector, more especially among MSA counties, they have the advantage to display significantly 

positive long-distance spillovers that, in addition, maintain their influence in the innovation 

process across types of counties. In comparison, private R&D spending in non-MSA does not 

lead to any long-distance spillovers. As a result, innovation policy measures need to consider the 

larger geographical extent of academic knowledge spillovers when evaluating the relative 

performance of the actors of innovation and providing financial support such as grants and tax 

breaks.  

In this paper we examined the role of local and distant knowledge spillovers based on 

geographical proximity and patent creation-citation flows respectively. Although our empirical 

results have highlighted the importance of these types of spillovers, we are aware that other 

channels such as those based on labor migration (Almeida and Kogut 1999) are worth exploring 

further. They too would indicate the directionality of spillovers. To our knowledge, the role of 

these factors has never been measured in the frame of a US county-level knowledge production 

function, yet they could shed light into the dynamics of the interregional system of innovation. 

We leave this endeavor for future research. 
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1
 We test the sensitivity of our estimation results to a 12% and 15% depreciation rate. We 

conclude that our estimation results are generally consistent across rates. 

2
 The US Small Business Administration uses this standard to define a small business. 

Previous studies adopt the same standard to define a small firm (Acs and Audretsch 1988; 

Anselin et al. 1997). 

3
 Our distance cut-offs are based on previous studies measured across US metropolitan 

areas such as Anselin et al. (1997), Acs et al. (2002) and Mukherji and Silberman (2013). The 

cut-off distances are based on the commuting patterns (e.g. Smallen 2004; Rapino and Fields 

2013) and are chosen to capture the knowledge spillovers that take place via face-to-face 

interactions. While 75 miles may seem a long distance, the US Department of Transportation 

(Smallen 2004) reports that as many as 3.3 million Americans are “stretch commuters” traveling 

more than 50 miles one-way to work. Stretch commuters living in rural areas drive up to 99 

miles daily (Smallen 2004). 

4
 According to Fischer and Wang (2011, 50-51), an inverse distance decay function is not 

an interaction form that is generally observed. As such, we prefer an inverse exponential decay 

function that is widely used in the literature (e.g. Bode 2004; Fischer et al. 2006). We define 

various distance decay parameters (0.01, 0.05, 0.1, 0.15, 0.17, 0.2, 0.23, and 0.25) and measure 

the model performance in terms of adjusted R
2
, the Akaike Information Criterion, and the 

Bayesian Information Criterion. The best model fit is obtained with a distance decay parameter 

of 0.17. All results are available upon request. 
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5
 For example, Jaffe and Palmer (1997) find a significant relationship between R&D 

expenditures and compliance costs associated to environmental regulations. See Stewart (2012) 

for a more comprehensive literature review about regulations, innovation, and R&D investment.  

6
 We use the function “spreg” of the R package “sphet” (Piras 2010) to implement the 

SHAC estimator. While it offers several kernel functions, we choose the Parzen kernel because it 

has the steepest decay and is thus the closest function to the inverse exponential function with a 

distance decay parameter of 0.17. However, we have tried all the other kernels and the standard 

errors of the results are not very sensitive to them. All the results are available from the authors 

upon request. 

7
 The Chow F-test (Chow 1960) rejects the null hypothesis of structural homogeneity 

between MSA and non-MSA counties for both the 50 and 75 miles distance cut-offs at the 1% 

significance level. F statistics are 38.15 (d.f. 1=12, d.f. 2=3,085) and 39.16 (d.f. 1=12, d.f. 

2=3,085) for 50 and 75 miles respectively. 

8
 We thank an anonymous reviewer for suggesting these model specifications. The 

SDEM with robust standard errors is estimated with the function “gstslshet” of R package “sphet” 

developed by Piras (2010). The Tobit SEM is estimated with Stata’s module “SPAUTOREG” 

developed by Shehata (2012). 
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TABLE 1. Descriptive Statistics 

  
Total (3,109) Non-MSA county (2,256) MSA county (853) 

Variable Explanation Moran's I Mean Median S.D. # of zero Mean Median S.D. # of zero 

Patent Total patents (fractional count) 0.74 3.4 0.9 9.2 433 150.9 22.4 494.3 5 

Private Private R&D ($1,000) 0.75 2,562.6 0.0 51,096.1 2,100 821,238.4 10.0 4,909,446.0 423 

Univ Academic R&D ($1,000) 0.26 3,844.6 0.0 52,053.5 2,154 139,803.4 0.0 587,920.1 569 

Graduate Share of graduate degree (%) 1.03 3.1 2.7 1.4 0 5.1 4.4 2.8 0 

Diversity 
Level of sectoral employment 

diversity 
0.49 2.8 2.7 0.9 0 4.5 4.4 1.5 0 

Large Share of large firms (%) 0.37 7.7 7.6 3.4 35 8.4 8.0 3.1 0 

Intra Share of intra citation (%) 0.21 5.3 0.0 14.5 1,731 11.9 10.5 11.7 164 

W50*Private 
Spatial lag of private R&D within 

50 miles 
1.46 1,197.3 0.7 7,203.5 1,010 156,065.0 2,611.5 868,314.2 115 

W50*Univ 
Spatial lag of academic R&D 

within 50 miles 
1.20 1,199.1 3.2 5,718.0 981 22,842.2 1,042.7 98,245.8 137 

W75*Private 
Spatial lag of private R&D within 

75 miles 
1.46 1,246.4 6.2 7,241.3 498 156,361.4 2,853.2 868,534.2 49 

W75*Univ 
Spatial lag of academic R&D 

within 75 miles 
1.23 1,215.2 17.4 5,719.9 482 22,885.6 1,118.2 98,246.2 49 

M50*Private 
Spatial lag of private R&D over 50 

miles 
0.43 13,420.2 834.9 38,261.2 911 554,273.5 95,399.4 1,694,144.0 27 

M50*Univ 
Spatial lag of academic R&D over 

50 miles 
0.46 3,241.2 57.6 9,630.0 987 108,505.4 22,761.0 318,639.9 35 

M75*Private 
Spatial lag of private R&D over 75 

miles 
0.43 13,124.7 816.4 37,021.9 915 541,172.4 92,510.5 1,671,672.0 27 

M75*Univ 
Spatial lag of academic R&D over 

75 miles 
0.46 3,179.5 52.9 9,531.9 989 106,991.6 22,649.5 317,264.5 35 

Size Total employees 0.59 10,384.5 7,265.0 10,025.0 1 123,651.5 58,219.0 230,296.7 0 

Note: Moran’s I statistics are calculated by using the spatial weight matrix of the inverse exponential decaying function with the distance decay parameter of 0.17 within 91 

miles to ensure having at least one neighbor region. The p-values of the statistics are all significant at 1% and they are calculated by using the permutation method of 499 

random draws. The column of # of zero means the number of counties of having zero values for each variable. 
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TABLE 2. Estimation Results of OLS 
  Model 1 (OLS) Model 2 (OLS) Model 3 (OLS) Model 4 (OLS) 

  Distance cut-off: 50 miles Distance cut-off: 75 miles Distance cut-off: 50 miles Distance cut-off: 75 miles 

  Estimate (SHAC S.E.) Estimate (SHAC S.E.) Estimate (SHAC S.E.) Estimate (SHAC S.E.) 

Intercept -4.209 (0.208) *** -4.214 (0.209) *** -3.494 (0.200) *** -3.486 (0.200) *** 

ln Private 0.076 (0.005) *** 0.077 (0.005) *** 0.043 (0.008) *** 0.043 (0.008) *** 

ln Univ 0.032 (0.004) *** 0.031 (0.004) *** 0.027 (0.008) *** 0.027 (0.008) *** 

ln Graduate 0.755 (0.046) *** 0.760 (0.046) *** 0.582 (0.053) *** 0.586 (0.053) *** 

ln Diversity -0.060 (0.062) 

 

-0.062 (0.063) 

 

-0.164 (0.072) ** -0.177 (0.072) ** 

ln Large -0.237 (0.031) *** -0.235 (0.032) *** -0.165 (0.028) *** -0.164 (0.028) *** 

ln Intra 0.093 (0.011) *** 0.094 (0.011) *** 0.083 (0.012) *** 0.084 (0.012) *** 

ln W*Private 0.044 (0.005) *** 0.047 (0.006) *** 0.027 (0.005) *** 0.026 (0.006) *** 

ln W*Univ 0.006 (0.004) 

 

0.006 (0.005) 

 

0.007 (0.005)  0.010 (0.005) * 

ln M*Private 0.001 (0.006) 

 

0.002 (0.005) 

 

0.003 (0.005)  0.005 (0.005)  

ln M*Univ 0.039 (0.006) *** 0.038 (0.006) *** 0.031 (0.006) *** 0.029 (0.006) *** 

MSA             -1.419 (0.321) *** -1.493 (0.320) *** 

MSA*ln Private   

  

  

  

0.012 (0.009)  0.011 (0.009)  

MSA*ln Univ   

  

  

  

-0.011 (0.009)  -0.010 (0.009)  

MSA*ln Graduate   

  

  

  

0.339 (0.092) *** 0.334 (0.092) *** 

MSA*ln Diversity   

  

  

  

0.193 (0.107) * 0.218 (0.107) ** 

MSA*ln Large             -0.076 (0.093)  -0.061 (0.093)  

MSA*ln Intra   

  

  

  

0.018 (0.023)  0.017 (0.023)  

MSA*ln W*Private   

  

  

  

0.025 (0.008) *** 0.035 (0.009) *** 

MSA*ln W*Univ   

  

  

  

-0.008 (0.009)  -0.015 (0.010)  

MSA*ln M*Private   

  

  

  

0.081 (0.021) *** 0.077 (0.020) *** 

MSA*ln M*Univ             0.024 (0.020)  0.029 (0.020)  

ln Size 0.503 (0.026) *** 0.501 (0.026) *** 0.451 (0.025) *** 0.450 (0.025) *** 

State dummies Yes     Yes     Yes     Yes     

Total Observations 3109   3109   3109   3109   

BP test 230.076 ***  229.670 ***  207.971 ***  205.568 ***  

Moran's I 0.114 ***  0.116 ***  0.130 ***  0.130 ***  

Adjusted R2 0.882     0.882     0.897     0.897     

AIC -1.133 

  

-1.128 

 

  -1.260 

 

  -1.260 

  BIC -1.016     -1.012     -1.122     -1.122     

Note: * P-value< 10%, ** P-value< 5%, *** P-value< 1%. W means the spatial weight matrix based on the inverse exponential decaying function with the distance 

decay parameter of 0.17 within 50 or 75 miles. M stands for the spatial weight matrix based on the patent citation flows over 50 or 75 miles. Moran’s I statistics are 

calculated by using the W matrix but within 91 miles to ensure having at least one neighbor region. Standard errors are spatial HAC standard errors (Kelejian and 

Prucha 2007) using the Parzen kernel function with the bandwidth of 91 miles. 
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TABLE 3. Estimation Results of SDEM and Tobit SEM 
  Model 5 (SDEM-GMM) Model 6 (SDEM-GMM) Model 7 (Tobit SEM-ML) Model 8 (Tobit SEM-ML) 

  Distance cut-off: 50 miles Distance cut-off: 75 miles Distance cut-off: 50 miles Distance cut-off: 75 miles 

  Estimate (Robust S.E.) Estimate (Robust S.E.) Marginal Effects (Robust S.E) Marginal Effects (Robust S.E) 

Intercept -3.492 (0.190) *** -3.486 (0.191) *** -7.721† (0.328)† *** -7.715† (0.328)† *** 

ln Private 0.042 (0.008) *** 0.043 (0.008) *** 0.033 (0.010) *** 0.033 (0.010) *** 

ln Univ 0.027 (0.007) *** 0.027 (0.007) *** 0.021 (0.010) ** 0.020 (0.010) ** 

ln Graduate 0.573 (0.052) *** 0.578 (0.052) *** 0.934 (0.092) *** 0.945 (0.092) *** 

ln Diversity -0.151 (0.068) ** -0.163 (0.068) ** -0.017 (0.115)   -0.039 (0.115) 

 ln Large -0.166 (0.028) *** -0.165 (0.028) *** -0.184 (0.062) *** -0.180 (0.062) *** 

ln Intra 0.083 (0.011) *** 0.084 (0.012) *** 0.114 (0.018) *** 0.116 (0.017) *** 

ln W*Private 0.028 (0.005) *** 0.028 (0.006) *** 0.044 (0.009) *** 0.045 (0.010) *** 

ln W*Univ 0.006 (0.005)   0.008 (0.005)   0.010 (0.008)   0.014 (0.010) 

 ln M*Private 0.003 (0.005)   0.005 (0.005)   0.012 (0.010)   0.015 (0.010) 

 ln M*Univ 0.031 (0.006) *** 0.028 (0.006) *** 0.042 (0.011) *** 0.037 (0.011) *** 

MSA -1.420 (0.278) *** -1.496 (0.278) *** -1.040 (0.377) *** -1.116 (0.376) *** 

MSA*ln Private 0.013 (0.009)   0.012 (0.009)   -0.002 (0.011)   -0.003 (0.011) 

 MSA*ln Univ -0.010 (0.009)   -0.009 (0.009)   -0.018 (0.010) * -0.017 (0.010) 

 MSA*ln Graduate 0.388 (0.085) *** 0.381 (0.086) *** 0.158 (0.115)   0.147 (0.115) 

 MSA*ln Diversity 0.130 (0.098)   0.155 (0.098)   -0.070 (0.135)   -0.035 (0.135) 

 MSA*ln Large -0.066 (0.077)   -0.052 (0.076)   0.154 (0.103)   0.168 (0.102)   

MSA*ln Intra 0.016 (0.022)   0.015 (0.022)   -0.014 (0.028)   -0.016 (0.028)   

MSA*ln W*Private 0.025 (0.009) *** 0.035 (0.010) *** 0.011 (0.011)   0.019 (0.013) 

 MSA*ln W*Univ -0.004 (0.009)   -0.011 (0.010)   -0.003 (0.011)   -0.010 (0.013) 

 MSA*ln M*Private 0.079 (0.020) *** 0.075 (0.019) *** 0.081 (0.026) *** 0.077 (0.026) *** 

MSA*ln M*Univ 0.024 (0.020)   0.029 (0.020)   0.005 (0.027)   0.010 (0.027)   

ln Size 0.451 (0.023) *** 0.450 (0.023) *** 0.738 (0.032) *** 0.735 (0.032) *** 

Lambda 0.420 (0.091) *** 0.421 (0.091) *** 0.037† (0.017)† ** 0.038† (0.017)† ** 

Sigma 

  

    

 

  0.802† (0.015)† *** 0.802† (0.015)† *** 

State dummies Yes     Yes     Yes     Yes     

Total Observations 3109     3109     3109 (Left-Censored Obs.: 438) 3109 (Left-Censored Obs.: 438) 

Moran's I 0.177 ***  0.179 ***    

Adjusted R2 0.896 

 

  0.896 

 

  0.803 

 

  0.803 

  AIC -1.257 

 

  -1.258 

 

  0.281 

 

  0.280 

  BIC -1.117     -1.118     0.419     0.418     

Note: * P-value< 10%, ** P-value< 5%, *** P-value< 1%. Superscript † indicates robust ML estimates in Models 7 and 8. Other estimates in Models 7 and 8 present 

marginal effects of explanatory variables on observed ln Patent, i.e. 𝛽 ⋅ Prob(-3.496608 < ln Patent) and its standard errors are calculated by the delta method. W means the 

spatial weight matrix based on the inverse exponential decaying function with the distance decay parameter of 0.17 within 50 or 75 miles. M stands for the spatial weight 

matrix based on the patent citation flows over 50 or 75 miles. Spatial error terms of SDEM and Tobit SEM are based on the W matrix within 91 miles. Moran’s I statistics 

are calculated by using the W matrix but within 91 miles to ensure having at least one neighbor region. The adjusted R2 of Tobit SEM is calculated following Buse (1973). 
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FIGURE 1. California’s Patent Citing Pattern (using the fractional counting method) 
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