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ABSTRACT: Spatial lag dependence in a regression model is similar to the inclusion of a serially 

autoregressive term for the dependent variable in time-series context. However, unlike in the 

time series model, the implied covariance structure matrix from the spatial autoregressive model 

can have a very counterintuitive and improbable structure. A single value of spatial auto 

correlation parameter can imply a large band of values of pair-wise correlations among different 

observations of the dependent variable, when the weight matrix for the spatial model is specified 

exogenously. We illustrate this using cigarette sales data (1963-92) of 46 US states. We observe 

that two "close" neighbors can have very low implied correlations compared to distant neighbors 

when the weighting scheme is the first-order contiguity matrix. However, if the weight matrix 

can capture the underlying dependence structure of the observations then this unintuitive 

behavior of implied correlation gets corrected to a large extent. Keeping this in mind, we explore 

the possibility of constructing the weight matrix (or the overall spatial dependence in the data) 

that is consistent with the underlying correlation structure of the dependent variable. The results 

using our suggested procedure are very encouraging. 

Keywords:  Spatial Dependence, Variance-Covariance Matrix, Implied Correlation Structure, Weight 

Matrix 
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1. INTRODUCTION 

 

The key idea of modeling of spatial data is that a set of locations can characterize the dependence 

among the observations. One of the many general ways to do this is to define a neighborhood 

structure based on the shape of lattice. Among others, are measuring the distance between 

centroids of the regions. Once this spatial dependence structure is determined or assumed based 

on distance (social/economic/physical) or adjacency, models resembling time series 

autoregressive structures are considered. The two very popular models that take into account 

such spatial dependence structure into account are simultaneously autoregressive (SAR) and 

conditionally autoregressive (CAR) models. The SAR and CAR models were originally 

developed by Whittle (1954) and Besag (1974), respectively, mainly on the doubly infinite 

regular lattice. On regular lattice these models resemble the well understood stationary time 

series model defined on the integers. On irregular lattice, however, which is most common in 

economic applications, the effect that the exogenously defined arbitrary neighborhood structure 

and spatial correlation parameter have on implied covariance structure is not well understood. 

Wall (2004) was probably the first to do a systematic analysis of the impractical nature of the 

correlation structure implied by the SAR and CAR models, and this issue  has spurred some 

further inquires, see for instance Martellosio (2009).  

 

In this paper we highlight the problem of implied structure of the SAR model in case of irregular 

lattice and suggest a possible solution. Although our proposal is for the SAR model, it can be 

easily extended to the CAR model. Section 2 provides a summary of the existing literature. In 

Section 3, we set up the notations and discuss the implied correlation problem arising from the 

SAR model. Section 4 presents empirical example using cigarette sales data on 46 US states, and 

highlights the unintuitive and impractical behavior of the implied correlation structure when the 

usual neighborhood matrix is used. Our findings match with the results of Wall (2004). Section 5 

first gives the basic idea behind our  matrix construction and then we estimate W using 

Levenberg-Marquardt non-linear optimization procedure. In Section 6, we demonstrate how our 

W matrix helps to correct the implied correlation structure and gives a more intuitive result using 

the same dataset as in Section 4.  Section 7 concludes the paper. 
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2. SUMMARY OF RELEVANT PREVIOUS WORK 

 

Although the implied correlation structures of the spatial models have such peculiar pattern, it is 

quite surprising that this issue has received relatively little attention in the literature, given that 

these models are so widely used in a variety of applications. Haining (1990) and Besag and 

Kooperberg (1995) mentioned resulting heteroscedasticity from the SAR model with 

homoscedastic error term. They also pointed out about the unequal covariance between regions 

that are at same distance apart. The very first systematic treatment of this problem was probably 

done by Wall (2004). She provided a detailed description of the implied structure of SAR and 

CAR models, and in particular, considered the dependence and covariance structures on an 

irregular lattice. Using the US state level summary data of SAT verbal score for the year 1999, 

she investigated the relationship between the correlation parameter  and the implied pairwise 

correlations among the scores of various states when W was based on first-order neighbors. The 

implied spatial correlations between the different states using the SAR and CAR models did not 

seem to follow an intuitive or practical scheme. For example, Wall (2004) found that for the 

SAR model Missouri and Tennessee are constrained to be the least spatially correlated states, 

than Tennessee and Arkansas, although all of them are first-order neighbors. Martellosio (2009) 

shed some further light on how correlation structure of the SAR model depends on W and . He 

showed that implied correlation between two spatial units depends on particular type of walks 

connecting the units. When | | is small, the correlation is largely determined by short walks; 

however, for large values of | |, longer walks have more importance. Since  can be estimated 

only after W has been chosen, one cannot control the correlation properties by specifying W. 

Defining W based on graph, his work explains the inconsistency of ranking of implied 

correlation between pair of locations as  changes and also how the sign of correlation depends 

on the length of the shortest walk (in graph theoretic sense) from one location to another.  

 

3. THE SAR MODEL AND THE IMPLIED CORRELATION PROBLEM 

Let  be a Gaussian random process where  are n different 

locations. The value of the variable y in location   depends on the values in its neighboring 
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locations . One way to model this dependence is by the simultaneous autoregressive (SAR) 

model: 

                                                   y=ρWy+Xβ+ε ,                                                                        (1) 

where y is a n×1 vector observation on the dependent variable, ρ is the spatial autoregressive 

parameter,  is n×n spatial weight matrix representing degree of potential 

interactions between neighboring locations (geographic/economic/social), X is n×k matrix of 

observations on the explanatory (exogenous) variables,  is k×1 vector of regression coefficients 

and ε is a n×1 vector of error term with   .  

Spatial effects are incorporated using the row standardized weight matrix W. One common way 

to do this is to define    is 

 

The other ways to define the neighborhood structure W is to express weights as functions of the 

distance between two points or as functions of length of borders. For ease of interpretation, the 

weight matrix is often standardized such that the elements of each row sum to one. This ensures 

that all the weights are between 0 and 1, and facilitates the interpretation of operations with the 

weight matrix as an averaging of neighborhood values. It also ensures that the spatial parameters 

of different models are comparable. This is not intuitively obvious, but relates to constraints 

imposed in a maximum likelihood estimation framework, specifically the spatial autocorrelation 

parameter ρ must lie in the interval   to , where  and  are, respectively 

the smallest and largest eigen values of W [Cliff and Ord (1980)].  For a row standardized 

matrix, the largest eigen value is +1, and this facilitates the interpretation of ρ as “correlation 

coefficient”. 

 

It is easy to see that the implied covariance matrix of y for model (1) is given by  

 

                                                 Var(y) =σ²(I-ρW)
-1

(I-ρW)
-1

 .                                                   (2)        
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Using (2), we can calculate the pair-wise correlations , i, j=1,2,… , n, i≠j. 

However, given ρ and W, these implied  values can be very hard to interpret in a practical 

way.  

To illustrate the implied correlation problem, we first provide some analytical results under two 

extreme cases of weight matrix. 

Case 1: All units are neighbors of each other:  Cases which may be consistent with this are the 

ones in which all cross sectional units interact in a confined space. Such a matrix was considered 

by Case (1992) in a panel data study of the adoption of new technologies by farmers, and by Lee 

(1999) in a study of the properties of least squares estimators in linear spatial models, and also by 

Kelijian and Prucha (2002) to evaluate the properties of 2SLS and OLS estimators of SAR 

models. Here   

 

Therefore, the weight matrix can be expressed as: , n>1, where J is the n x n 

matrix of ones. 

It can be verified that , where  and . 

Assuming   we obtain  

 

                                 Var(Y )=(I-ρW)
-1

(I-ρW)
- ‘1

= .                              (3) 

 

Given this variance-covariance structure, it can be seen that correlation matrix goes to I matrix 

as . Thus, when each unit is neighbor of each other, in the limit the correlation matrix does 

not depend on ρ! 
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Case II: Here each unit has only two neighbors. For instance, when n=4 we have 

                                                         

 , which is a tridiagonal Toeplitz form. The implied correlation 

matrix (using (2)) is also tridiagonal Toeplitz, and is given by  

Corr(y) = , 

where  

. 

Each element of the inverse of such tridiagonal matrix is non zero (El-Shehaway,El-Shreff,Al-

Henaway (2008)). Here units 1 and 3 are not connected (w13 = w31 = 0) directly, but we have a 

non zero implied correlation. In spatial context it implies that even if two units are “not” 

neighbors of each other, they can have very high non- zero implied spatial correlations. This can 

be interpreted as the spill-over effects from neighbors. 

 

These examples are somewhat artificial. Therefore in the next section, using the widely applied 

cigarette sales data on 46 States, we demonstrate that a single value of ρ can imply a large band 

of values of  with the same values. Our findings confirm the results of Wall (2004).  

4. AN EMPIRICAL EXAMPLE 

In order to analyze the spatial interaction and implied correlation structure of a SAR model we 

consider the 1963-1992 cigarette sales data on 46 states, that has been widely used for panel data 

analysis by Baltagi and Levin (1992) and Baltagi, Griffin and Xiong (2000), and later by Elhorst 

(2005) for spatial panel analysis. The underlying model is: 
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                               (4) 

where C is real per capita sales of cigarettes to persons of smoking age (14 years and older), 

measured in packs of cigarettes per capita, P is the average retail price of a pack of cigarettes 

measured in real terms, Y is the real per capita disposable income, and Pn denotes the minimum 

real price of cigarettes in any neighboring state. This last variable is a proxy for the smuggling 

effect across state borders, and acts as a substitute price attracting consumers from high-tax 

states to cross over to low-tax states. As in Elhorst (2005), we use the conventional form of row-

standardized first-order neighborhood weight matrix, and in Table 1, present the estimation 

results based on 1992 cross-section data for the 46 states. 

 

Table 1: Estimation Results of Model (3) (Standard errors are in parentheses) 

Parameters OLS   SAR(W=row standardized 

first-order contiguity) 

β 1 -1.24(0.31) -1.15 (0.29)  

β 2 0.17(0.32) 0.27(0.30)  

β 3 1.03(0.19) 0.74(0.15)  

ρ N/A 0.28(0.14) 

 0.05 0.04 

Log Likelihood  25.78  

 0.15  0.18 

 

To illustrate the behavior of the implied correlation structure from the estimated SAR model, in 

Figure 1, we display the histogram of all the implied first-order neighbor correlations and notice 

a wide variation. The smallest correlation is 0.09 that occurs between Missouri and Tennessee 

and the largest correlation, equal to 0.37, occurs between New Hampshire and Maine. Wall 

(2004) also noted smallest and largest implied correlations exactly for these states, though she 

used different data (1999 US statewide average SAT verbal scores) and model. The common 

feature between Wall‟s and our situations is the W matrix, more specifically, Maine has only one 

neighbor, i.e., New Hampshire, and Tennessee and Missouri have 7 and 8 neighbors, 

respectively. Also the qualitative nature of the histograms of Wall (in her Figure 3 with  =0.60) 
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and ours are very similar. Therefore, we can say that implied correlation is simply a function of 

the first-order neighbors each state has.  

To elaborate further on the implied correlations of Missouri and Tennessee with their 8 and 7 

neighbors, respectively, from Table 2, we note that Missouri is more correlated with Kansas than 

with Tennessee; and Tennessee is more correlated with its neighbor Alabama than with Missouri. 

Such peculiarity arises mainly due to the nature of covariance matrix (2) that involves inversion 

of the sparse matrix  

Figure 1: HISTOGRAM OF IMPLIED CORRELATIONS 

 

Our relative ranking of the states using implied spatial correlation almost coincides with that of 

Wall (2004). These two datasets have no connection economically; and ranking of implied 

spatial correlation is determined by the priory fixed weight matrix. 
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Table 2: IMPLIED CORRELATION BETWEEN FIRST-ORDER NEIGHBORS OF MISSOURI 

AND TENNESSEE 

Missouri Tennessee

1st order neighbors Implied correlation 1st order neighbors Implied correlation

Arkansas 0.0965 Alabama 0.1354

Illinois 0.1062 Arkansas 0.1036

Iowa 0.0977 Georgia 0.1256

Kansas 0.1516 Kentucky 0.0931

Kentucky 0.0879 Mississippi 0.1325

Nebraska 0.1108 Missouri 0.0873

Oklahoma 0.1110 Virginia 0.1044

Tennessee 0.0873  

 

Figure 2 demonstrates that the relationship between the implied correlation and number of 

neighbors is not that simple. If number of neighbors is less, then implied correlation is strong. 

There is a band in which the implied correlations vary for a given number of neighbors, and we 

observe less heterogeneity for extreme number of neighbors. 

Figure 2: IMPLIED CORRELATIONS OF SAR MODEL 
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Now we focus on how implied correlations behave as functions of true parameter ρ (i.e., 

irrespective of data). From Figure 3, we observe that for any given ρ, there is a high variability in 

correlations. For example, when ρ=0.1, the implied correlations vary from 0.03 to 0.13; while for 

ρ=0.6, they vary from 0.25 to 0.73. As ρ increases the implied correlations of all locations 

increases monotonically, which matches the behavior of autoregressive models in time series, 

i.e., correlation increases with the  autoregressive parameter. However, the most unintuitive 

behavior is that as ρ changes, there are many lines that cross each other, implying the 

inconsistency of ranking of implied correlations. For example, when ρ=0.2 the correlation 

(Missouri, Arkansas) =0.17 and correlation (Tennessee, Arkansas) =0.24. However, when ρ=0.7, 

correlation (Missouri, Arkansas) =0.33 and correlation (Tennessee, Arkansas) =0.26. Wall 

(2004) reported the same phenomenon. Therefore, the implied correlations of SAR model with 

first-order neighbor W matrix do exhibit some unintuitive and impractical behavior. 

Figure 3: IMPLIED CORRELATIONS OF SAR MODEL (as a function of ρ) 
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5. NUMERICAL OPTIMIZATION 

It is a general understanding that the weight matrix captures the “spatial-links” of the 

observations as Ord (1975) stated that the (i, j)
th

  element of W “represents the degree of possible 

interaction of location j on location i”. However, each element of (I-ρW)
-1

(I-ρW)
-1’

 provides the 

correlation structure of y. As evident from Wall (2004) and from our illustration above, if one 

expresses the spatial dependence in terms of neighborhood matrix W, then the covariance from 

(I-ρW)
-1

(I-ρW)
-1’

  does not have a logical connection to the spatial correlation. 

The choice of spatial weights is a central component of spatial models as it imposes a priori 

structure on spatial dependence. Although the existing literature contains an implicit 

acknowledgement of the issues of choosing an appropriate weight matrix, most empirical studies 

treat W known, fixed and arbitrary spatial weight matrix (Giacomini and Granger 2004). We 

propose to construct the weight matrix using past time series data to remove the odd features of 

implied correlations discussed above. 

Suppose the dependent variable is observed over n locations, where i=1…n for t=1,…,T in 

past T periods.  We estimate the variance covariance matrix , whose (i,j)
th

 element is 

given by , where  Our objective 

is to investigate the implied correlation structure of a SAR model at the current period, and 

therefore, construction of  the weight matrix based on past observations helps us to avoid the 

endogeneity issue. 

We solve the following system for W 

                                                 .  

We can take  which will have no consequence for our solution to W. Also, since W is 

row standardized, the solution will be invariant to ρ. Therefore, without loss of generality we 

solve 

 

 i.e., 
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                                            .                         (5)                                             

We need to find W that solves the equation (4) subject to 

i)  

ii)  

iii) . 

Alternatively, our objective is to find a solution to the constrained system of nonlinear equations: 

                        (6) 

where  is a nonempty, closed and convex set and  is a given mapping 

defined on an open neighborhood  of the set W. Here , where n is the number of 

locations. We denote by the set of solutions to (5). To solve (6) we minimize: 

, where  is the Euclidean norm, subject to the constraints as above.  

We employ Levenberg-Marqaurdt (LM) algorithm that interpolates between Gauss-Newton 

algorithm and method of gradient descent. In many cases, LM algorithm is more robust than 

Gauss-Newton as it finds a solution even if it starts very far off from the optimal values.  It is an 

iterative procedure where in each step w is replaced by w+d. To determine d, the function 

F(w+d) are approximated by their linearization using Taylor Theorem  i.e., 

, where  

    is the gradient of F with respect to w.  At its minimum, the gradient of f with 

respect to d will be zero. The above 1
st
 order approximation gives 

. 

Taking derivative with respect to d and setting the result equal to zero gives 

, where J is the Jacobian term. This gives us a set of linear equations which 

can be solved for the increment vector d. Levenberg-Marquardt contribution is to replace this 

equation by a „damped version’, 



The Improbable Nature of the Implied Correlation Matrix from Spatial Regression Models  13 

 

 

. 

The main difference between Gauss-Newton and LM algorithm is in terms of normal equations. 

In LM algorithm the normal equations are modified in such a way that the increment vector d is 

always rotated towards the direction of steepest descent. 

 In a more formal way, LM type method for this system of equations generates a sequence   

by setting , where  is the solution to the linearised subproblem: 

  .                         (7)             

Here, is an approximation of Jacobian of  and  is the positive parameter. Note that 

 is a strictly convex quadratic function, hence the solution  of (6) always exists uniquely. 

Since our constraints is of box constraints type, any iterate  can be projected easily into the 

feasible region W. The feasible region of W is such that any  has the structure defined by 

the above constraints. Therefore, we set where   is the 

projection matrix and   is the unique solution to the unconstrained subproblem: 

                                                 . 

We call this projected LM method since the unconstrained step gets projected onto the feasible 

region W. The projected version of LM algorithm needs significantly less time per iteration since 

the strict convexity of the function  ensures that  is a global minimum of this function if 

and only if , i.e., if and only if  is the unique solution of the system of linear 

equations [for detailed discussion on Levenberg- Marquardt Method, see Nocedal and Wright 

(2006)]: 

                                                                     (8) 

The step-by-step algorithm is as follows: 

S1) Choose  

S2) If then Stop, otherwise go to S3. 
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S3) Compute = . 

S4)  and compute   as a solution to (8).   

S5) If then set   , update k to k+1 and 

go to S2; Otherwise go to S6. 

S6) Set  and compute  as a solution to (8).   

S7) If then set   , update k to k+1 

and go to S2.  

Note, if any k
th

 iteration comes to S6, then for k+1
th

 iteration onwards, it will flow as

. This is due to the choice of dampening factor as suggested by Marquardt (1963). If 

there is no reduction in residual by setting   , then the dampening factor is increased 

by successive multiplication by v until a better point is found with the new dampening factor 

 for some k. However, if the use of  results in reduction of residuals then 

this is taken as a new value of  and the process continues. In other words, as  gets small, the 

algorithm approaches the Gauss-Newton algorithm, if becomes large with successive 

iterations, it approaches the steepest gradient algorithm. The technique invented by Levenberg-

Marquardt involves “blending" between these two extremes. It uses a steepest descent type 

method until our objective function approaches a minimum, and then gradually switches to the 

quadratic rule. It tries to guess how close we are to a minimum by how our error is changing. 

The intuition is simple; i.e., if error is increasing, then our quadratic approximation is not 

working well and we are likely not near a minimum, so we should increase  in order to blend 

more towards simple gradient descent. Conversely, if error is decreasing, our approximation is 

working well, and we expect that we are getting closer to a minimum so  is decreased to bank 

more on the Hessian. The algorithm we used is very similar to the projected LM algorithm of 

Kanzow-Yamashita-Fukushima (2002). As long as F is affine and twice continuously 

differentiable, any accumulation point of the sequence { } generated by our algorithm, is a 

stationary point of (7).  
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6. APPLICATION OF THE PROPOSED SOLUTIONS  

We estimate the SAR model (4) for the year 1992 using our proposed weight matrix. In order to 

avoid endogeneity problem, we construct our W matrix using the data on C (Cigarette sales) from 

46 states for the period 1963-1991.  

Table 3 provides the estimates of the SAR model using the standard W matrix and our 

numerically solved W using Levenberg-Marquardt algorithm. It is clear that the estimated SAR 

model using our proposed W matrix is equally good compared to that with the standard W in 

terms of log-likelihood value. 

   Table 3: Estimation Results of Model (3) (Standard errors are in parentheses) 

 SAR(W=Constructed 

using the LM algorithm ) 

SAR(W=row standardized first-

order contiguity) 

β 1 -1.10(0.29) -1.15 (0.29)  

β 2 0.18(0.29) 0.27(0.30)  

β 3 0.55(0.17) 0.74(0.15)  

ρ 0.45(0.16) 0.28(0.14) 

σ² 0.03 0.04 

Log Likelihood 26.37 25.78  

R² 0.27  0.18 

 

            In Figure 4 we plot the first-order implied correlation as a function of weights from our 

estimated W. Out of 46 x 46=2116 pairs of locations, we only plots the 188 first-order neighbor 

correlations. We first arrange the weights of 188 pairs of first-order neighbors in ascending 

order, and then the implied correlations are sorted out in ascending order as well. From the 

Figure 4 we note that the implied correlations have very slow increasing trend with weights. Also 

there is little variation. This is in contrast to Figure 2 (where number of neighbor increases 

means weight decreases) which displayed much higher variation.  

Next we focus on how implied correlations behave as function of ρ. 
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In contrast to Figure 3 now for each value of , the band of variation of implied correlations is 

very narrow in Figure 5. For example, when ρ=0.1, the implied correlations vary only in between 

0.004 and 0.006; while for ρ=0.6 they vary from 0.09 to 0.11. Also now there is no crossing, and 

thus the inconsistency of the ranking of implied correlations seen in Figure 3, is absent in Figure 

5. 

Figure 4: IMPLIED CORRELATIONS OF SAR MODEL (W=Constructed) 

 

Figure 5: IMPLIED CORRELATIONS OF SAR MODEL (as a function of ρ)  
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Finally, to address the implied heterogeneity of SAR model, in Figure 6, we plot the 46 diagonal 

elements of Σ as a function of the number of first-order neighbors. Using the first-order 

contiguity matrix leads to substantial variation of implied variances of yi (which decreases with 

the number of neighbors). In contrast, our proposed W matrix hardly produces any implied 

heterogeneity. 

Figure 6: VARIANCE COMPARISON OF 46 US STATES  

 

 

6. CONCLUSION 

We first demonstrate that the unintuitive and impractical nature of the implied correlations 

implied by the estimated SAR models with row standardized neighborhood matrix. We propose a 

simple methodology for estimation of spatial weight matrix. Our procedure yields very intuitive 

results in terms of implied correlations and variances. Our proposed methodology is illustrated 

using the cigarette sales data. Although we apply our proposed method only to the SAR model, it 

can be easily extended to the CAR model. For CAR, Var(y) =σ
2
(I-ρW) -1

, which is a variation of 

(5), and therefore, one can apply the LM procedure to construct a more meaningful weight 

matrix. 
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