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Abstract. The topological principles of the well-known Atkin Q-analysis are applied to the 
identification of clusters of industries using input-output systems.  The operational methodology 
of Q-analysis is presented in detail and supported by empirical application to the analysis of the 
Chicago economy in 2000.  The central point of the paper is the interpretation of the structural 
chains of highest dimension as the most significant input-output industrial clusters.  This new 
methodology provides a new way for visualizing economic complexity through the process of 
structural economic complication. 

  

I. Introduction 

This chapter returns to the issue of cluster identification using a set of interindustry accounts; in 

this sense, it is rooted more in the legacy of industrial cluster and complex analysis associated 

with the early work of Czamanksi (1971, 1974, 1976) and Czamanski and Ablas (1979) and 

deepens the now more involved cluster based development strategies described in detail by 

Bergman and Feser (2000) and the methods linking clusters and innovation presented in Bröcker 

et al. (2003).  It does not focus on the more extensive cluster based approaches popularized by 

Porter (1990) since the objective is to explore the industrial interdependencies in more detail.  

However, it does share with Dridi and Hewings (2002) the need to make more imaginative use of 
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the structures present in interindustry tables to draw out more information about the structure of 

the economy being evaluated. 

The major purpose of this chapter is to propose a new method of identification of the more 

important industrial (sectoral) backward and forward linkages clusters in input-output systems in 

a way that avoids the rigidities of some of the earlier approaches (that identified mutually 

exclusive clusters).  Our attention is directed to the application and further elaboration of the 

ideas of combinatorial topology to the analysis of economic structure of input-output systems in 

the form of structural Q-analysis originally proposed by Atkin (1974, 1981) for the analysis of 

the structure of human interactions.  Our central concern is the complication of regional or 

interregional structure that results from the deepening of economic complexity in the form of 

hierarchies of interacting economic subsystems.  Industrial clusters are thus seen as important 

examples of such subsystems.  Their structural changes will require new tools for illustration, 

interpretation and visualization.  We will start from the presentation and the interpretation of the 

procedure of structural Q-analysis based on the slicing procedure of the ordered set of the 

elements of the Leontief inverse.  Further, the chains of structural complication and rank-size 

ordering procedure will be introduced and interpreted as backward and forward industrial 

linkages clusters. 

An important component of the modern process of industrialization is the change in the nature of 

interdependence in production characterized by the essential interdependence found in input-

output and social accounting tables.  Analysis of the evolution of interindustry relations has now 

become, once more, a major point of interest for economic analysts.  The  traditional approach, 

proposed by Chenery in the 1950s (Chenery, 1953; Chenery and Watanabe, 1958; Chenery and 

Clark, 1959) was extended further in various subsequent studies (see Carter, 1970; Long Jr., 

1970; Ohkawa and Rosovsky, 1973; Song, 1977; Matthews et al., 1982; Harrigan et. al., 1980; 

Deutsch and Syrquin, 1989 among others).  The main purpose of this chapter is to illustrate some 

new approaches using Q-analysis to enhance the understanding of the economic structural 

changes caused by simultaneous technological changes reflected in a set of input-output tables.  

With this methodology, alternative slicing procedures can be adopted to reveal the finer structure 

of an economy.  In addition, the methodology may be seen to have important relationships with 

popular notions of backward and forward linkages. 
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In the next section, the methodology will be described; section 3 develops the slicing procedure 

that is derived from the decomposition algorithm.  This section also provides an illustration with 

reference to the Chicago metropolitan region for the year 2000.  Section 4 presents the industrial 

clusters and their augmentation.  The paper concludes with some summary comments and 

potential links to some recent work proposing the notion of fragmentation of production systems. 

II. Methodology of Structural Q-analysis. 

The following methodological description of the procedure of Q-analysis is taken from the Atkin 

studies (Atkin, 1974, 1981; see also, Sonis, 1988, Sonis and Hewings, 1998, 2000; Sonis, et al., 

1994). 

II.1. Slicing procedure. 

Consider the Leontief inverse matrix ijB b=  of some Input-Output system and let 

 be a fixed set of pairs of economic sectors entering the input-output 

system.  Let   be the corresponding components of the matrix B.  The slicing 

procedure results in the construction of a new matrix 

( ) ( ) (1 1 2 2, , , ,..., ,m mi j i j i j )

1 1 2 2
, , ,

m mi j i j i jb b b…

sB  whose only non-zero components are  

 while all other components are zeroes.  This slicing procedure referred to as a 

variable filter approach is the basic element of minimal flow analysis (see, Holub and Schnabl, 

1985, Holub, et al., 1985; Schnabl and Holub, 1979 and Schnabl, 1993).  

1 1 2 2
, , ,

m mi j i j i jb b b…

The matrix SI  with the unit entries on the place of non-zero components of the matrix sB  is 

called the incidence matrix associated with the slicing procedure.  Obviously,  different 

slicing procedures exist for each nxn matrix B.  The simplest slicing procedure consists of the 

choice of the slicing parameter µ, and the exclusion from the matrix B of all components  such 

that

2

2n

ijb

ijb μ< .  The choice of a definite slicing parameter depends on the investigator’s preferences 

about the economic structure of the interaction matrix. 

II.2. Simplicial families for backward linkages. 
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We will consider the procedure of the Q-analysis of backward linkages (forward linkages can be 

considered analogously).  Consider a slicing procedure defined with the help of the set of 

components, .  This procedure defines the sliced matrix 
1 1 2 2

, , ,
m mi j i j i jb b b… sB  and the 

corresponding incidence matrix SI .  The set 1 2, ,..., mj j j  of the corresponding economic sectors 

serves as a set of vertices of a many-dimensional polyhedron generating the partial backward 

linkages backcloth.  

The procedure for the construction and partition of this polyhedron into a set of simplexes can be 

defined in a following way: for each fixed economic sector, , 1, 2,..., ,ki k m=  consider the set of 

all different economic sectors 
0 1
, ,...

qkr r rj j j corresponding to the non-zero  

associated with the inputs into the sector  from the economic sectors

0 1
, ,...,

k r k r k rqk
i j i j i jb b b

ki 0 1
, ,...

qkr r rj j j . The simplex, 

 associated with the sector , is a minimal convex polyhedron in -dimensional 

space with q+1 vertices

( )  
k

b
q k iS i S=

k ki kq

0 1
, ,...

qkr r rj j j . 

<<insert figure 1 here>> 

Figure 1 provides an example of an incidence matrix from a 10x10 input-output table; sales 

(rows) are shown as S(i) entries and purchases (columns) as P(j) entries; interaction between 

sectors is signified by a value “1” while a “0” indicates no interaction.  From this matrix, the 

simplex associated with S1 (5-simplex) and P10 (4-simplex) are shown as illustrations. 

The set of simplexes, ( ) ( ) ( )
1 21 2, ,...,  

m

b b b
q q q mS i S i S i  associated with all economic sectors , 

k=1,2,...,m, is called the backward linkages simplicial family, generating the polyhedron with 

vertices

ki

1 2, ,..., mj j j , and its partition - the simplicial complex K(S).  

II.3. q-nearness and q-connectedness. 

Two simplices ( )kS i  and  ( )sS i  are q-near in the simplicial family iff they share at least q+1 

vertices. Thus, two sectors  and ki si  are q-near iff there are at least q+1 economic sectors with 

the inputs into the sectors  and ki si .  If all vertices of a simplex  ( )sS i  are the vertices of a 
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simplex  then the simplex ( )kS i ( )sS i  is a face of the simplex ( )kS i .  In figure 1, the shared face 

is between the simplexes in highlighted (P3, P8 and P9); from this the complex where by these 

sets of activities are liked (through the shared face) is also shown. 

Two simplices  and  ( )kS i ( )sS i  are q-connected by a chain of simplices of length r iff there is a 

sequence of r pair-wise q-near simplices ( ) ( ) ( ) ( ), ,..., , ,k p q sS i S i S i S i .  The relationship of q-

connectedness generates the partition of the simplicial family K(S) into q-connected components. 

The enumeration of all q-connected components for each dimension  is the essence of the 

Q-analysis of the simplicial family.  In figure 1, two simplices are connected by a shared face 

(P3, P8 and P9) generating a complex. 

0q ≥

I1.4 Procedure and meaning of the backward linkages Q-analysis. 

Following Atkin (1974, 1981) the operational basis for Q-analysis is given by a shared face 

matrix SF of the form: 

T
S SSF I I U= −   (1) 

where SI  is the incidence matrix corresponding to the chosen slicing procedure, T
SI  is its 

transpose and U is the matrix with unit entries.  The components of the matrix SF provide the 

amounts of mutual vertices for each pair of sectors , ,   , 1, 2,...,k si i k s m= .  In other words, the 

components of the shared face matrix SF are the dimensions of the maximal mutual faces for 

each pair of simplices  and ( ) ,kS i ( )sS i . 

The Atkin operational algorithm for Q-analysis includes the following iterative steps for each 

dimension q, q = 0,1,...,N, where N is the maximal dimension of simplices from the simplicial 

complex: 

Identify the economic sectors and their corresponding simplices whose dimensions are 

equal to or larger than q; these dimensions are on the main diagonal of the shared face 

matrix SF. 
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Identify all distinct q-connected components - q-chains -  of the set of simplices 

constructed in the previous step: two q-dimensional simplices ( )q kS i and ( )q sS i  belong to 

the same q-chain if the corresponding rows  and ki si  of the shared face matrix SF include 

at least one column with entries larger than or equal to q; the number of distinct q-chains is 

denoted as . The vector qQ

{ }1, ,...,N N oQ Q Q Q−=   (2) 

is called the structural vector of the simplicial complex K(S) and the maximal q-value N is a 

dimension of this complex. 

 

II.5. Chains of structural complication of simplicial families and the rank-size ordering. 

Consider two slicing procedures  and   and their corresponding simplicial families 

associated with the simplicial complexes 

1S 2S

( )1K S  and ( )2K S .  The simplicial complex ( )2K S  is 

called the structural complication of the simplicial complex ( )1K S  and noted ( ) ( )1 2K S K S≺  if 

each simplex  from  is a face of some simplex ( )/
p kS i ( )1K S ( )q kS i′′  from .  This means 

that the incidence matrix 

( )2K S

2SI  includes all non-zero (unit) components from the incidence 

matrix
1SI . The set of m simplicial complexes ( ) ( ) ( )1 2, ,..., mK S K S K S  is called the chain of 

structural complication if for each pair of complexes ( )sK S  and ( )rK S , one of them is the 

structural complication of the other.  Obviously, the chain of structural complication is defined 

with the help of the set of corresponding incidence matrices such that, for each pair of incidence 

matrices, one of them includes all the units from the other.  This means also that the chain of 

structural complication is generated by the sequence of extending sets of the components of the 

interaction matrix B. 

One of the important methods of the generation of the chains of structural complication will now 

be illustrated, namely, the rank-size ordering method.  The rank-size ordering method is based 
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on the construction of the sequence of all components of the interaction matrix ijB b=  ordered 

by size in such a way that the largest components are at the top of the decreasing-by-size 

sequence of components.  Thus, it is possible to consider only the qualitative rank-size sequence 

in place of the absolute value of each component.  Consider the sequence of slicing procedures 

and the corresponding set of sliced matrices, the first of which includes only the largest 

components of the interaction matrix B, while the second matrix includes the two largest 

components, the third matrix includes three largest components, and so forth.  In such a way, one 

obtains the chain of structural complication associated with the relative size on the matrix 

components.  The Q-analysis of each element of the chain of structural complication reveals 

some hidden features of the intersectoral interactions. 

 

III. Slicing procedure based on Decomposition method: Links between Q-analysis and the 

Superposition Principle1  

The main operational tool of Q-analysis is the slicing procedure, i.e. a procedure for the choice 

of unit non zero components in the matrix of structural incidence.  Simultaneously, the 

algorithmic procedure of the superposition principle (see, Sonis and Hewings, 1988, 1998, 2000) 

generates the decomposition of the flow matrix A into the weighted sum: 

1 1 2 2 ... k kA p A p A p A= + + +    (4) 

where the components i ip A , i = 1,2,...,k, represent the hierarchy of spatio-economic sub-

structures within the input-output or social accounting system.  Since each matrix Ai is the 

optimal solution of some linear programming optimization problem, usually it includes many 

zero components.  We can use the decomposition (4) for derivation of the set of incidence 

matrices for Q-analysis of the flow matrix A in the following way.  First consider the first 

tendency 1 1p A and construct the first incidence matrix 1
SI  whose unit non-zero components are 

located in the place of non-zero components of matrix, 1 1p A .  The first incidence matrix 1
SI , 

                                                 
1 This section draws on Guo et. al, (2005) 
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represents the first slicing for the matrix A.  The second slicing will be associated with the 

incident matrix 2
SI  including the unit non-zero components located in the place of non-zero 

components of the matrix, 1 1 2 2p A p A+ .  In the same way the incident matrix, r
SI , will be 

generated with the help of non-zero components of the 

matrix 1 1 2 2 ... ; 1, 2,...,r rp A p A p A r k+ + + = . 

Next, for the description of the structural complication of the flow, A, we can apply the 

procedure of Q-analysis to each incidence matrix from the sequence of incident matrices 
1 2, ,..., k
S S SI I I .  The corresponding sequence of the structural vectors 

{ }1 0, ,..., , 1, 2,...,r r r r
N NQ Q Q Q r−= = k    (5) 

will present the topological structural complication of the matrix of flows A.  The component, 

, will be interpreted further as the main backward linkages industrial cluster. r
NQ

 

III.1. Example  

For better demonstration of the slicing procedure of the construction of incidence matrix 

corresponding to the extreme tendencies 1 1 2 2 ... ; 1, 2,...,r rp A p A p A r k+ + + = , we consider the 

case of the analysis of the main backward linkages industrial clusters of the Chicago 

metropolitan economy in 2000.  Table 1 describes the aggregated sectors used in the analysis of 

the Chicago economy; the input-output tables are extracted from the region’s econometric-input-

output model (see Israilevich et al., 1997 for details) while the flows are shown in table 2. 

<<insert tables 1,2 and 3 here>> 

Table 3 defines the first extreme tendency acting within the framework of the backward linkages. 

The first incident matrix, corresponding to this first extreme tendency has a form 
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1 1

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1

0.319
1 1 1 0 1 0
0 0 0 1 0 0
0 0 0 0 0 0

p A

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 

This implies that first incidence matrix is as follows: 

1 1

0 0 0 0 0 0
0 0 0 0 0 1
1 1 1 0 1 0

 
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

SI

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

Λ = = ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 

The second slicing will have a form 

1 1 2 2

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 0 0 0 0 1 0 0

0.319 0.248
0 0 0 1 0 0 1 1 1 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

p A p A

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟

+ = +⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

This generates the second cumulative incidence matrix.  This cumulative incidence matrix 

includes units in the place they appeared in one of the matrices : 1 2,A A

2 2

0 0 0 0 0 0
0 0 0 0 0 1
1 1 1 1 1 0

 
1 1 1 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0

SI

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

Λ = = ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠
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The next  incidence matrices can be constructed in the same manner: 

1 1 2 2 3 3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
1 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1

0.319 0.248 0.166
0 0 0 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

p A p A p A+ + =

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟

= + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎟

 

with cumulative incidence matrix generating from matrices : 1 2, , A A A3

3 3

0 0 0 0 0 0
1 0 0 0 0 1
1 1 1 1 1 1

 
1 1 1 1 1 1
0 1 1 1 1 0
0 0 0 0 0 0

SI

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

Λ = = ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 

and 

1 1 2 2 3 3 4 4

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0

1 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1
0.319 0.248 0.166

0 0 0 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

p A p A p A p A

= + +

+ + + =

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

0 0 0 0 0 0

0 0 0 1 1 0

0 1 1 0 0 0
0.103

0 0 0 0 0 0

1 0 0 0 0 1

0 0 0 0 0 0

+

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

with 
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4 4

0 0 0 0 0 0
1 0 0 1 1 1
1 1 1 1 1 1

 
1 1 1 1 1 1
1 1 1 1 1 1
0 0 0 0 0 0

SI

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

Λ = = ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 

 

III.2. Structure of the simplices of backward linkages for each industry.  

The augmentation of structure of the simplices of backward linkages for each industry can be 

extracted from the location of units in the set of columns of matrices 

corresponding to the given industry (see table 4). 1 2 3 4, , ,Λ Λ Λ Λ

<<insert table 4 here>> 

Table 4 describes the augmentation of the structure of the backward simplices for each industry 

S(RES),S(CNS), S(MNF), S(TTF), S(SRV) and S(GOV) with the help of the sequence of four 

columns corresponding to industries in the incidences . 1 2 3 4, , ,Λ Λ Λ Λ  

 

III.3.Analysis of the shared face matrices for cumulative incidence matrices 

The numerical procedure of structural Q-analysis yields the following shared face matrices 

, that correspond to the sequence of the incidence matrices  : 1 2 3, , ,SF SF SF SF 4 1 2 3 4, , ,Λ Λ Λ Λ

1

1 1 1 1 1 1
1 0 1 1 1 1
1 1 3 1 1 1
1 1 1 0 1 1
1 1 1 1 1 1
1 1 1 1 1 1

SF

− − − − − −⎛ ⎞
⎜ ⎟− − − − −⎜ ⎟
⎜ ⎟− − − − −

= ⎜ ⎟
− − − − −⎜ ⎟
⎜ ⎟− − − − − −
⎜ ⎟⎜ ⎟− − − − − −⎝ ⎠
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with q-chain  

{ }
{ }
{ }
{ }

{ } {

1

4 :
3 :
2 :
1:

0 : ,

q

q MNF
q MNF

Q q MNF
q MNF

q MNF TTF

=⎧
⎪ =⎪⎪= =⎨
⎪ =⎪

=⎪⎩ }

−

−

   (6) 

and the structural vector ; 1 4 0
1 1 1 1 2

Q ⎧ ⎫
= ⎨ ⎬
⎩ ⎭

2

1 1 1 1 1 1
1 0 1 0 1 1
1 1 4 4 1 1
1 0 4 5 1 1
1 1 1 1 1 1
1 1 1 1 1 1

SF

− − − − − −⎛ ⎞
⎜ ⎟− − −⎜ ⎟
⎜ ⎟− − − −

= ⎜ ⎟
− −⎜ ⎟
⎜ ⎟− − − − − −
⎜ ⎟⎜ ⎟− − − − − −⎝ ⎠

 

with the structural chain: 

{ }
{ }
{ }
{
{ }

{ }

2

5 :
4; ,
3; ,
2; ,
1; ,

0; , ,

q

q TTF
q MNF TTF
q MNF TTF

Q
q MNF TTF
q MNF TTF

q MNF TTF CNS

=⎧
⎪ =⎪
⎪ =⎪= ⎨ =⎪
⎪ =
⎪

=⎪⎩

}
   (7) 

and the structural vector ; 2 5 0
1 1 1 1 1 1

Q ⎧ ⎫
= ⎨ ⎬
⎩ ⎭

Further,  
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3

1 1 1 1 1 1
1 1 1 1 1 1
1 1 5 5 3 1

1
1 1 5 5 3 1
1 1 3 3 3 1
1 1 1 1 1 1

SF

− − − − − −⎛ ⎞
⎜ ⎟− −⎜ ⎟
⎜ ⎟− −

= ⎜ ⎟
− −⎜ ⎟
⎜ ⎟− − −
⎜ ⎟⎜ ⎟− − − − − −⎝ ⎠

−

 

with structural chain 

{ }
{ }

{ }
{

{ }
{ }

3

5 : ,
4; ,

3; , ,
2; , ,

1; , , ,
0; , ,

q

q MNF TTF
q MNF TTF

q MNF TTF SRV
Q

q MNF TTF SRV
q MNF TTF SRV CNF

q MNF TTF SRV

=⎧
⎪ =⎪
⎪ =⎪= ⎨ =⎪
⎪ =
⎪

=⎪⎩

}
   (8) 

and the structural vector ; 3 5 0
1 1 1 1 1 1

Q ⎧ ⎫
= ⎨ ⎬
⎩ ⎭

Next 

4

1 1 1 1 1 1
1 3 3 3 3 1
1 3 5 5 5 1
1 3 5 5 5 1
1 3 5 5 5 1
1 1 1 1 1 1

SF

− − − − − −⎛ ⎞
⎜ ⎟− −⎜ ⎟
⎜ ⎟− −

= ⎜ ⎟
− −⎜ ⎟
⎜ ⎟− −
⎜ ⎟⎜ ⎟− − − − − −⎝ ⎠

 

with structural chain 
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{ }
{ }

{ }
{
{ }
{ }

4

5 : , ,
4; , ,

3; , , ,
2; , , ,
1; , , ,
0; , , ,

q

q MNF TTF SRV
q MNF TTF SRV

q MNF TTF SRV CNS
Q

q MNF TTF SRV CNS
q MNF TTF SRV CNS
q MNF TTF SRV CNS

=⎧
⎪ =⎪
⎪ =⎪= ⎨ =⎪
⎪ =
⎪

=⎪⎩

}
   (9) 

and the structural vector  4 5 0
1 1 1 1 1 1

Q ⎧ ⎫
= ⎨ ⎬
⎩ ⎭

 

IV. Industrial clusters and their augmentation 

The consideration of the first incidence matrix 1Λ and its structural vector (see equation 7) will 

generate the appearance of the main industrial cluster in the first decomposition tendency.  The 

chain of the highest dimension presents the main industrial cluster existing in the 

first tendency of the decomposition of the matrix of backward linkages.  The structure of this 

cluster can be derived from the cumulative incidence matrix corresponding to the first tendency: 

3 :{ }q MN= F

{ } { }1

0 0 0 0 0 0
0 0 0 0 0 1

          1 1 1 0 1 0
      

0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

Cluster

MNF RES CNS MNF SRV

⎛ ⎞
⎜ ⎟ ↓⎜ ⎟
⎜ ⎟ =→

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

Λ  

The appearance of the next industrial cluster of the highest dimension can be 

derived from the second incidence matrix (see equation 8): 

5 :{ }q TT= F
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{ } { }
2

0 0 0 0 0 0
0 0 0 0 0 1
1 1 1 1 1 0

  
    1 1 1 1 1 1

0 0 0 0 0 0
0 0 0 0 0 0

Cluster

TTF RES CNS MNF TTF SRV GOV

⎛ ⎞
⎜ ⎟ ↓⎜ ⎟
⎜ ⎟

= ⎜ ⎟ =→⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

Λ  

The merger of previous two clusters into the industrial cluster of dimension  

has a form: 

4 :{ , }q MNF TT= F

{ }
{ }

{ }
{ }

2

0 0 0 0 0 0
0 0 0 0 0 1

           1 1 1 1 1 0
  

1 1 1 1 1 1        
0 0 0 0 0 0
0 0 0 0 0 0

Cluster

RES CNS MNF TTF SRVMNF

TTF RES CNS MNF TTF SRV GOV

⎛ ⎞
⎜ ⎟ ↓⎜ ⎟

=⎜ ⎟→
= ⎜ ⎟

→⎜ ⎟ =
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

Λ  

This cluster appears as main cluster in the next cumulative incidence matrix (see equation 8).  Its 

structure has the highest dimension 5 :{ , }q MNF TTF= : 

{ }
{ }

{ }
{ }

3

0 0 0 0 0 0
1 0 0 0 0 1

           1 1 1 1 1 0
  

1 1 1 1 1 1        
0 1 1 1 1 0
0 0 0 0 0 0

Cluster

RES CNS MNF TTF SRVMNF

TTF RES CNS MNF TTF SRV GOV

⎛ ⎞
⎜ ⎟ ↓⎜ ⎟

=⎜ ⎟→
= ⎜ ⎟

→⎜ ⎟ =
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

Λ  

The augmentation of this cluster has a following form:  
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{ }
{ }
{ }

{ }
{ }
{ }

3

0 0 0 0 0 0
1 0 0 0 0 1

           1 1 1 1 1 0
       1 1 1 1 1 1

0 1 1 1 1 0                    
0 0 0 0 0 0

Cluster

RES CNS MNF TTF SRVMNF

TTF RES CNS MNF TTF SRV GOV

SRV CNS MNF TTF SRV

⎛ ⎞
⎜ ⎟ ↓⎜ ⎟ =
⎜ ⎟→

= ⎜ ⎟
=→⎜ ⎟

⎜ ⎟→
=⎜ ⎟⎜ ⎟

⎝ ⎠

Λ  

The final augmentation of industrial clusters has the following form 

5 :{ , , }q MNF TTF SRV= (see equation 9) and: 

{ }
{ }
{ }

{ }
{ }
{ }

4

0 0 0 0 0 0
1 0 0 1 1 1

    1 1 1 1 1 1
      1 1 1 1 1 1

1 1 1 1 1 1     
0 0 0 0 0 0

Cluster

RES CNS MNF TTF SRV GOVMNF

TTF RES CNS MNF TTF SRV GOV

SRV RES CNS MNF TTF SRV GOV

⎛ ⎞
⎜ ⎟ ↓⎜ ⎟ =
⎜ ⎟→

= ⎜ ⎟
=→⎜ ⎟

⎜ ⎟→
=⎜ ⎟⎜ ⎟

⎝ ⎠

Λ  

The consecutive stages of the augmentation of industrial clusters can be presented in the form of 

deepening of complexity (complication) of the sectors of Chicago economy.  These results imply 

the following complication diagram of backward Chenery-Watanabe linkages in Chicago 

economy in 2000: 

31.5%
57.6% ,
73.3% , ,
83.6% , , ,

MNF
MNF TTF

MNF TTF SRV
MNF TTF SRV CNS

  

This complication diagram of backward linkages (on the aggregation level of six economic 

sectors) is characteristic for Chicago economy during the all periods, 1975-2000 (see Guo et al, 

2005). 
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The analogous Q-analysis of forward linkage sector structure is presented in table 5.  In the first 

two decomposed levels, the number of sectors obtaining the inputs from MNF have decreased 

since 1980; in 1980, all the six sectors obtain MNF’s input (q=5), but by 1985, the number 

decreases to four (q=4), and since 1990, only four sectors obtain MNF’s input inside the Chicago 

regional economy.  On the other hand, the service sector (SRV) has been sending inputs to more 

and more sectors, increasing from only one sector in 1980 to two in 1985 and three after 1990. 

<<insert table 5 here>> 

In analogous fashion, the complication diagram for the Chenery-Watanabe backward linkages 

for 2000 has a form:  

33.7%
62.1% ,
81.2% , ,
87.1% , , ,

TTF
TTF MNF

TTF MNF SRV
TTF MNF SRV CNS

 

This complication diagram is also characteristic for the complication of backward linkages 

during the period 1980-2000.  It is important to note the main key sector for forward linkages is 

MNF, which is replaced by TTF for backward linkages. 

 

V. Conclusion 

While earlier analysis of the production structure in Chicago’s economy suggested that the 

economy was becoming simpler (see Hewings et al. 1998) in the sense that the degree of intra-

regional intermediation was declining, the analysis of sectoral structure explored a more detailed 

picture of the changes, showing the relationships of the sectoral structure in different levels of 

the transaction flows.  For about 50 per cent of the total transaction flows, the manufacturing and 

service sectors have the most noticeable changing features in that manufacturing has less and less 

connections with other sectors, while the service sectors, on the other hand, expanded their 

connections with other sectors inside the economy, further indicating their growing importance 

in the region. 
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The analysis reveals some features of the structure of Chicago’s economy in the last two decades 

that can be summarized as follows.  The results indicate that the production process in Chicago is 

increasingly becoming more dependent in a backward and forward sense on regions outside the 

Chicago economy.  This result is especially true for manufacturing; the fragmentation of 

production has been facilitated by the fast growth of the service sectors, especially transportation 

and communications, that have made it possible to source inputs from distant sources and to 

serve markets that are more geographically diverse.  This kind of production process has been 

observed internationally (see Jones and Kierzkowski, 1990, 2001a, 2001b).  Even though 

fragmentation of production may happen domestically and internationally, the process has not 

been documented at the regional level. 

The process of cluster development and its evolution remain a challenge; fragmentation may 

essentially result in a de-clustering process whereby major parts of the value chain of production 

may be spatially scattered rather than geographically concentrated.  Q-analysis offers a 

methodology that provides a simple way to explore these structural changes.  Obviously, the 

aggregated sectors employed here do not reveal the richness that can be explored; further, with 

interregional tables, the possible exists to evaluate the way in which structural changes have 

manifested themselves in the exchange of intra- for inter-regional interactions, thereby 

generating complication chains that extend far beyond the bounds of traditionally conceived 

geographically concentrated clusters. 
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Table 1 Sector Definitions in the Chicago Input-Output Table 
Sector Name Content 

1 RES Resources 

2 CNS Construction 

3 MNF Non-durable and durable Goods 

4 TTF Transportation, Trade, FIRE 

5 SRV Services 

6 GOV Government 

 

Table 2. Total Flows for the Chicago Region, 2000 
 RES CNS MNF TTF SRV GOV Total 

RES 29 25 640 183 76 6 959
CNS 277 816 2892 5096 4152 574 13806
MNF 453 4668 17534 9338 13640 474 46106
TTF 431 2578 10697 12041 9284 475 35506
SRV 210 2255 6452 8153 6860 229 24159
GOV 15 49 566 617 344 41 1633

Total 1416 10391 38781 35428 34356 1800 122171

Note: RES (resources), CNS (construction), MNF (manufacturing), TTF (trade, transportation), SRV (services), GOV (government) 

 

Table 3 The Coefficient Table and Largest Entries (by column) 
 1 2 3 4 5 6 
1 0.020662 0.002402 0.016503 0.005169 0.002202 0.00358
2 0.195747 0.078485 0.074577 0.143844 0.120843 0.318719
3 0.319912 0.449218 0.452127 0.263576 0.397018 0.263391
4 0.304647 0.248104 0.275841 0.339856 0.270234 0.263987
5 0.14828 0.217044 0.166361 0.230131 0.19968 0.12735
6 0.010752 0.004746 0.014591 0.017424 0.010023 0.022973
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Table 4. The augmentation of the simplices of backward linkages for each industry  

0 1 2 3 0 1 2 2
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

                   

b b b b b b b b

S RES S RES S RES S RES S CNS S CNS S CNS S CNS

CNS CNS

MNF MNF MNF MNF MNF MNF MNF MNF

TTF TTF TTF TTF TTF TTF

SRV SRV SRV

    

 

0 1 2 2 0 1 2 3
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

                   

SRV

b b b b b b b b

S MNF S MNF S MNF S MNF S TTF S TTF S TTF S TTF

CNS

MNF MNF MNF MNF MNF MNF MNF

TTF TTF TTF TTF TTF TTF TTF

SRV SRV SRV

  

0 1 2 3 0 1 1 3
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

                   

b b b b b b b b

S SRV S SRV S SRV S SRV S GOV S GOV S GOV S GOV

CNS CNS CNS CNS CNS CNS

MNF MNF MNF MNF MNF

TTF TTF TTF TTF TTF TTF

SRV SRV
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Table 5 Forward linkages sectoral structure  
 1980 1985 1990 1995 2000 

q=3 {TTF} {TTF} {TTF} {TTF} {TTF} 

q=2 {TTF} {TTF} {TTF} {TTF} {TTF} 

q=1 {TTF} {MNF} {TTF} {MNF} {TTF} {MNF} {TTF} {MNF} {TTF} {MNF} 

q=0 {TTF} {MNF} {TTF} {MNF} {TTF} {MNF} {TTF} {MNF} {TTF} {MNF} 

CP1 0.329 0.332 0.332 0.335 0.337 

      

q=5 {MNF}     

q=4 {MNF} {MNF}    

q=3 {MNF, TTF} {MNF}, {TTF} {MNF}, {TTF} {MNF}, {TTF} {MNF}, {TTF} 

q=2 {MNF, TTF} {MNF, TTF} {MNF}, {TTF}, {SRV} {MNF}, {TTF}, {SRV} {MNF}, {TTF}, {SRV} 

q=1 {MNF, TTF} {MNF, TTF}, {SRV} {MNF, TTF, SRV} {MNF, TTF, SRV} {MNF, TTF, SRV} 

q=0 {MNF, TTF, SRV} {MNF, TTF, SRV} {MNF, TTF}, {SRV} {MNF, TTF, SRV} {MNF, TTF, SRV} 

CP2 0.587 0.607 0.615 0.619 0.621 

      

q=5 {MNF, TTF} {MNF, TTF} {MNF, TTF} {MNF, TTF} {MNF, TTF} 

q=4 {MNF, TTF, SRV} {MNF, TTF, SRV} {MNF, TTF, SRV} {MNF, TTF, SRV} {MNF, TTF, SRV} 

q=3 {MNF, TTF, SRV} {MNF, TTF, SRV} {MNF, TTF, SRV} {MNF, TTF, SRV} {MNF, TTF, SRV} 

q=2 {MNF, TTF, SRV} {MNF, TTF, SRV} {MNF, TTF, SRV} {MNF, TTF, SRV} {MNF, TTF, SRV} 

q=1 {MNF, TTF, SRV} {MNF, TTF, SRV} {MNF, TTF, SRV} {MNF, TTF, SRV} {MNF, TTF, SRV} 

q=0 {MNF, TTF, SRV} {MNF, TTF, SRV} {MNF, TTF, SRV} {MNF, TTF, SRV} {MNF, TTF, SRV} 

CP3 0.770 0.794 0.801 0.808 0.812 

      

q=5 {MNF, TTF} {MNF, TTF} {MNF, TTF} {MNF, TTF, SRV} {MNF, TTF, SRV} 

q=4 {MNF, TTF, SRV} {MNF, TTF, SRV} {MNF, TTF, SRV} {MNF, TTF, SRV} {MNF, TTF, SRV} 

q=3 {MNF, TTF, SRV} {CNS, MNF, TTF, SRV} {MNF, TTF, SRV} {MNF, TTF, SRV} {CNS, MNF, TTF, SRV}

q=2 {CNS, MNF, TTF, SRV} {CNS, MNF, TTF, SRV} {CNS, MNF, TTF, SRV} {CNS, MNF, TTF, SRV} {CNS, MNF, TTF, SRV}

q=1 {CNS, MNF, TTF, SRV} {CNS, MNF, TTF, SRV} {CNS, MNF, TTF, SRV} {CNS, MNF, TTF, SRV} {CNS, MNF, TTF, SRV}

q=0 {CNS, MNF, TTF, SRV} {CNS, MNF, TTF, SRV} {CNS, MNF, TTF, SRV} {CNS, MNF, TTF, SRV} {CNS, MNF, TTF, SRV}

CP4 0.836 0.849 0.858 0.866 0.871 
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 λ P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
S1 1 0 1 0 0 1 0 1 1 1
S2 1 1 0 0 0 0 1 1 0 0
S3 0 1 1 1 1 0 0 1 0 1
S4 1 0 1 0 0 0 0 0 0 0
S5 0 1 0 0 0 1 0 0 1 1
S6 0 1 0 0 0 0 0 1 0 0
S7 0 0 1 0 0 1 0 0 0 0
S8 0 1 0 0 1 0 0 1 0 1
S9 1 0 1 0 0 1 0 0 0 0

S10 0 1 1 0 0 0 1 1 1 0

Shared faces are indicated by cells with a dotted box

P8 P8
P10

P7
P9 P9 P2

P3 P3

P1 P6

P10 P8

P6 Complex
P9 P2

P1 P3
P7

S1
5-simplex

S10
4-simplex

q=2

 
 

Figure 1: Structure of Relationships: Simplices, Shared Faces and a Complex 


	The main operational tool of Q-analysis is the slicing procedure, i.e. a procedure for the choice of unit non zero components in the matrix of structural incidence.  Simultaneously, the algorithmic procedure of the superposition principle (see, Sonis and Hewings, 1988, 1998, 2000) generates the decomposition of the flow matrix A into the weighted sum:

