The Regional Economics Applications Laboratory of the University of Illinois focuses on the development and use of analytical models for urban and regional economic development. The purpose of the Discussion Papers is to circulate intermediate and final results of this research among readers within and outside REAL. The opinions and conclusions expressed in the papers are those of the authors and do not necessarily represent those of the University of Illinois. All requests and comments should be directed to Geoffrey J. D. Hewings, Director, Regional Economics Applications Laboratory, 607 South Matthews, Urbana, IL, 61801-3671, phone (217) 333-4740, FAX (217) 244-9339.
Web page: www.real.uiuc.edu

Industrial Clusters in the Input-Output Economic System

Michael Sonis
Bar Ilan University and Regional Economics Applications Laboratory, University of Illinois, 607 S. Mathews, \#318, Urbana, IL 61801-3671.sonism@mail.biu.ac.il
Geoffrey J.D. Hewings
Regional Economics Applications Laboratory, University of Illinois, 607 S. Mathews, \#318, Urbana, IL 618013671. hewings@uiuc.edu
Dong Guo,
Laboratoire d'Economie et de Gestion, UMR 5118 CNRS, Université de Bourgogne, Pôle d'Economie et de Gestion, B.P. 26611, 21066 Dijon Cedex - France. Dong.Guo@u-bourgogne.fr

Abstract

The topological principles of the well-known Atkin Q-analysis are applied to the identification of clusters of industries using input-output systems. The operational methodology of Q-analysis is presented in detail and supported by empirical application to the analysis of the Chicago economy in 2000. The central point of the paper is the interpretation of the structural chains of highest dimension as the most significant input-output industrial clusters. This new methodology provides a new way for visualizing economic complexity through the process of structural economic complication.

I. Introduction

This chapter returns to the issue of cluster identification using a set of interindustry accounts; in this sense, it is rooted more in the legacy of industrial cluster and complex analysis associated with the early work of Czamanksi (1971, 1974, 1976) and Czamanski and Ablas (1979) and deepens the now more involved cluster based development strategies described in detail by Bergman and Feser (2000) and the methods linking clusters and innovation presented in Bröcker et al. (2003). It does not focus on the more extensive cluster based approaches popularized by Porter (1990) since the objective is to explore the industrial interdependencies in more detail. However, it does share with Dridi and Hewings (2002) the need to make more imaginative use of
the structures present in interindustry tables to draw out more information about the structure of the economy being evaluated.

The major purpose of this chapter is to propose a new method of identification of the more important industrial (sectoral) backward and forward linkages clusters in input-output systems in a way that avoids the rigidities of some of the earlier approaches (that identified mutually exclusive clusters). Our attention is directed to the application and further elaboration of the ideas of combinatorial topology to the analysis of economic structure of input-output systems in the form of structural Q-analysis originally proposed by Atkin $(1974,1981)$ for the analysis of the structure of human interactions. Our central concern is the complication of regional or interregional structure that results from the deepening of economic complexity in the form of hierarchies of interacting economic subsystems. Industrial clusters are thus seen as important examples of such subsystems. Their structural changes will require new tools for illustration, interpretation and visualization. We will start from the presentation and the interpretation of the procedure of structural Q -analysis based on the slicing procedure of the ordered set of the elements of the Leontief inverse. Further, the chains of structural complication and rank-size ordering procedure will be introduced and interpreted as backward and forward industrial linkages clusters.

An important component of the modern process of industrialization is the change in the nature of interdependence in production characterized by the essential interdependence found in inputoutput and social accounting tables. Analysis of the evolution of interindustry relations has now become, once more, a major point of interest for economic analysts. The traditional approach, proposed by Chenery in the 1950s (Chenery, 1953; Chenery and Watanabe, 1958; Chenery and Clark, 1959) was extended further in various subsequent studies (see Carter, 1970; Long Jr., 1970; Ohkawa and Rosovsky, 1973; Song, 1977; Matthews et al., 1982; Harrigan et. al., 1980; Deutsch and Syrquin, 1989 among others). The main purpose of this chapter is to illustrate some new approaches using Q-analysis to enhance the understanding of the economic structural changes caused by simultaneous technological changes reflected in a set of input-output tables. With this methodology, alternative slicing procedures can be adopted to reveal the finer structure of an economy. In addition, the methodology may be seen to have important relationships with popular notions of backward and forward linkages.

In the next section, the methodology will be described; section 3 develops the slicing procedure that is derived from the decomposition algorithm. This section also provides an illustration with reference to the Chicago metropolitan region for the year 2000. Section 4 presents the industrial clusters and their augmentation. The paper concludes with some summary comments and potential links to some recent work proposing the notion of fragmentation of production systems.

II. Methodology of Structural Q-analysis.

The following methodological description of the procedure of Q-analysis is taken from the Atkin studies (Atkin, 1974, 1981; see also, Sonis, 1988, Sonis and Hewings, 1998, 2000; Sonis, et al., 1994).

II.1. Slicing procedure.

Consider the Leontief inverse matrix $B=\left\|b_{i j}\right\|$ of some Input-Output system and let $\left(i_{1}, j_{1}\right),\left(i_{2}, j_{2}\right), \ldots,\left(i_{m}, j_{m}\right)$ be a fixed set of pairs of economic sectors entering the input-output system. Let $b_{i_{1} j_{1}}, b_{i_{2} j_{2}}, \ldots, b_{i_{m} j_{m}}$ be the corresponding components of the matrix B. The slicing procedure results in the construction of a new matrix B_{s} whose only non-zero components are $b_{i_{1} j_{1}}, b_{i_{2} j_{2}}, \ldots, b_{i_{m} j_{m}}$ while all other components are zeroes. This slicing procedure referred to as a variable filter approach is the basic element of minimal flow analysis (see, Holub and Schnabl, 1985, Holub, et al., 1985; Schnabl and Holub, 1979 and Schnabl, 1993).

The matrix I_{S} with the unit entries on the place of non-zero components of the matrix B_{s} is called the incidence matrix associated with the slicing procedure. Obviously, $2^{n^{2}}$ different slicing procedures exist for each $n x n$ matrix B. The simplest slicing procedure consists of the choice of the slicing parameter μ, and the exclusion from the matrix B of all components $b_{i j}$ such that $b_{i j}<\mu$. The choice of a definite slicing parameter depends on the investigator's preferences about the economic structure of the interaction matrix.

II.2. Simplicial families for backward linkages.

We will consider the procedure of the Q -analysis of backward linkages (forward linkages can be considered analogously). Consider a slicing procedure defined with the help of the set of components, $b_{i_{i j},}, b_{i_{2} j_{2}}, \ldots, b_{i_{m} j_{m}}$. This procedure defines the sliced matrix B_{s} and the corresponding incidence matrix I_{S}. The set $j_{1}, j_{2}, \ldots, j_{m}$ of the corresponding economic sectors serves as a set of vertices of a many-dimensional polyhedron generating the partial backward linkages backcloth.

The procedure for the construction and partition of this polyhedron into a set of simplexes can be defined in a following way: for each fixed economic sector, $i_{k}, k=1,2, \ldots, m$, consider the set of all different economic sectors $j_{r_{0}}, j_{r_{1}}, \ldots j_{r_{q_{k}}}$ corresponding to the non-zero $b_{i_{k} j_{j_{0}}}, b_{i_{k} j_{n}}, \ldots, b_{i_{k} j_{r_{k k}}}$ associated with the inputs into the sector i_{k} from the economic sectors $j_{r_{0}}, j_{r_{1}}, \ldots j_{r_{q_{k}}}$. The simplex, $S_{q_{k}}^{b}\left(i_{k}\right)=S_{i_{k}}$ associated with the sector i_{k}, is a minimal convex polyhedron in q_{k}-dimensional space with $q+1$ vertices $j_{r_{0}}, j_{r_{1}}, \ldots j_{r_{q_{k}}}$.

$$
\text { <<insert figure } 1 \text { here>> }
$$

Figure 1 provides an example of an incidence matrix from a 10×10 input-output table; sales (rows) are shown as $S(i)$ entries and purchases (columns) as $P(j)$ entries; interaction between sectors is signified by a value " 1 " while a " 0 " indicates no interaction. From this matrix, the simplex associated with S1 (5-simplex) and P10 (4-simplex) are shown as illustrations.

The set of simplexes, $S_{q_{1}}^{b}\left(i_{1}\right), S_{q_{2}}^{b}\left(i_{2}\right), \ldots, S_{q_{m}}^{b}\left(i_{m}\right)$ associated with all economic sectors i_{k}, $k=1,2, \ldots, m$, is called the backward linkages simplicial family, generating the polyhedron with vertices $j_{1}, j_{2}, \ldots, j_{m}$, and its partition - the simplicial complex $K(S)$.

II.3. q-nearness and q-connectedness.

Two simplices $S\left(i_{k}\right)$ and $S\left(i_{s}\right)$ are q-near in the simplicial family iff they share at least $q+1$ vertices. Thus, two sectors i_{k} and i_{s} are q-near iff there are at least $q+1$ economic sectors with the inputs into the sectors i_{k} and i_{s}. If all vertices of a simplex $S\left(i_{s}\right)$ are the vertices of a
simplex $S\left(i_{k}\right)$ then the simplex $S\left(i_{s}\right)$ is a face of the simplex $S\left(i_{k}\right)$. In figure 1 , the shared face is between the simplexes in highlighted ($\mathrm{P} 3, \mathrm{P} 8$ and P 9); from this the complex where by these sets of activities are liked (through the shared face) is also shown.

Two simplices $S\left(i_{k}\right)$ and $S\left(i_{s}\right)$ are q-connected by a chain of simplices of length r iff there is a sequence of r pair-wise q-near simplices $S\left(i_{k}\right), S\left(i_{p}\right), \ldots, S\left(i_{q}\right), S\left(i_{s}\right)$, . The relationship of q connectedness generates the partition of the simplicial family $K(S)$ into q-connected components. The enumeration of all q-connected components for each dimension $q \geq 0$ is the essence of the Q-analysis of the simplicial family. In figure 1, two simplices are connected by a shared face (P3, P8 and P9) generating a complex.

I1.4 Procedure and meaning of the backward linkages Q-analysis.

Following Atkin $(1974,1981)$ the operational basis for Q -analysis is given by a shared face matrix $S F$ of the form:

$$
\begin{equation*}
S F=I_{S} I_{S}^{T}-U \tag{1}
\end{equation*}
$$

where I_{S} is the incidence matrix corresponding to the chosen slicing procedure, I_{S}^{T} is its transpose and U is the matrix with unit entries. The components of the matrix $S F$ provide the amounts of mutual vertices for each pair of sectors $i_{k}, i_{s}, k, s=1,2, \ldots, m$. In other words, the components of the shared face matrix $S F$ are the dimensions of the maximal mutual faces for each pair of simplices $S\left(i_{k}\right)$, and $S\left(i_{s}\right)$.

The Atkin operational algorithm for Q -analysis includes the following iterative steps for each dimension $q, q=0,1, \ldots, N$, where N is the maximal dimension of simplices from the simplicial complex:

Identify the economic sectors and their corresponding simplices whose dimensions are equal to or larger than q; these dimensions are on the main diagonal of the shared face matrix $S F$.

Identify all distinct q-connected components - q-chains - of the set of simplices constructed in the previous step: two q-dimensional simplices $S_{q}\left(i_{k}\right)$ and $S_{q}\left(i_{s}\right)$ belong to the same q-chain if the corresponding rows i_{k} and i_{s} of the shared face matrix $S F$ include at least one column with entries larger than or equal to q; the number of distinct q-chains is denoted as Q_{q}. The vector

$$
\begin{equation*}
Q=\left\{Q_{N}, Q_{N-1}, \ldots, Q_{o}\right\} \tag{2}
\end{equation*}
$$

is called the structural vector of the simplicial complex $K(S)$ and the maximal q-value N is a dimension of this complex.

II.5. Chains of structural complication of simplicial families and the rank-size ordering.

Consider two slicing procedures S_{1} and S_{2} and their corresponding simplicial families associated with the simplicial complexes $K\left(S_{1}\right)$ and $K\left(S_{2}\right)$. The simplicial complex $K\left(S_{2}\right)$ is called the structural complication of the simplicial complex $K\left(S_{1}\right)$ and noted $K\left(S_{1}\right) \prec K\left(S_{2}\right)$ if each simplex $S_{p}^{\prime}\left(i_{k}\right)$ from $K\left(S_{1}\right)$ is a face of some simplex $S_{q}^{\prime \prime}\left(i_{k}\right)$ from $K\left(S_{2}\right)$. This means that the incidence matrix $I_{S_{2}}$ includes all non-zero (unit) components from the incidence matrix $I_{S_{1}}$. The set of m simplicial complexes $K\left(S_{1}\right), K\left(S_{2}\right), \ldots, K\left(S_{m}\right)$ is called the chain of structural complication if for each pair of complexes $K\left(S_{s}\right)$ and $K\left(S_{r}\right)$, one of them is the structural complication of the other. Obviously, the chain of structural complication is defined with the help of the set of corresponding incidence matrices such that, for each pair of incidence matrices, one of them includes all the units from the other. This means also that the chain of structural complication is generated by the sequence of extending sets of the components of the interaction matrix B.

One of the important methods of the generation of the chains of structural complication will now be illustrated, namely, the rank-size ordering method. The rank-size ordering method is based
on the construction of the sequence of all components of the interaction matrix $B=\left\|b_{i j}\right\|$ ordered by size in such a way that the largest components are at the top of the decreasing-by-size sequence of components. Thus, it is possible to consider only the qualitative rank-size sequence in place of the absolute value of each component. Consider the sequence of slicing procedures and the corresponding set of sliced matrices, the first of which includes only the largest components of the interaction matrix B, while the second matrix includes the two largest components, the third matrix includes three largest components, and so forth. In such a way, one obtains the chain of structural complication associated with the relative size on the matrix components. The Q-analysis of each element of the chain of structural complication reveals some hidden features of the intersectoral interactions.

III. Slicing procedure based on Decomposition method: Links between Q-analysis and the Superposition Principle ${ }^{1}$

The main operational tool of Q-analysis is the slicing procedure, i.e. a procedure for the choice of unit non zero components in the matrix of structural incidence. Simultaneously, the algorithmic procedure of the superposition principle (see, Sonis and Hewings, 1988, 1998, 2000) generates the decomposition of the flow matrix A into the weighted sum:
$A=p_{1} A_{1}+p_{2} A_{2}+\ldots+p_{k} A_{k}$
where the components $p_{i} A_{i}, i=1,2, \ldots, k$, represent the hierarchy of spatio-economic substructures within the input-output or social accounting system. Since each matrix A_{i} is the optimal solution of some linear programming optimization problem, usually it includes many zero components. We can use the decomposition (4) for derivation of the set of incidence matrices for Q -analysis of the flow matrix A in the following way. First consider the first tendency $p_{1} A_{1}$ and construct the first incidence matrix I_{S}^{1} whose unit non-zero components are located in the place of non-zero components of matrix, $p_{1} A_{1}$. The first incidence matrix I_{S}^{1},

[^0]represents the first slicing for the matrix A. The second slicing will be associated with the incident matrix I_{S}^{2} including the unit non-zero components located in the place of non-zero components of the matrix, $p_{1} A_{1}+p_{2} A_{2}$. In the same way the incident matrix, I_{S}^{r}, will be generated with the help of non-zero components of the matrix $p_{1} A_{1}+p_{2} A_{2}+\ldots+p_{r} A_{r} ; r=1,2, \ldots, k$.

Next, for the description of the structural complication of the flow, A, we can apply the procedure of Q -analysis to each incidence matrix from the sequence of incident matrices $I_{S}^{1}, I_{S}^{2}, \ldots, I_{S}^{k}$. The corresponding sequence of the structural vectors
$Q^{r}=\left\{Q_{N}^{r}, Q_{N-1}^{r}, \ldots, Q_{0}^{r}\right\}, r=1,2, \ldots, k$
will present the topological structural complication of the matrix of flows A. The component, Q_{N}^{r}, will be interpreted further as the main backward linkages industrial cluster.

III.1. Example

For better demonstration of the slicing procedure of the construction of incidence matrix corresponding to the extreme tendencies $p_{1} A_{1}+p_{2} A_{2}+\ldots+p_{r} A_{r} ; r=1,2, \ldots, k$, we consider the case of the analysis of the main backward linkages industrial clusters of the Chicago metropolitan economy in 2000. Table 1 describes the aggregated sectors used in the analysis of the Chicago economy; the input-output tables are extracted from the region's econometric-inputoutput model (see Israilevich et al., 1997 for details) while the flows are shown in table 2.

$$
\text { <<insert tables 1,2 and } 3 \text { here>> }
$$

Table 3 defines the first extreme tendency acting within the framework of the backward linkages.

The first incident matrix, corresponding to this first extreme tendency has a form

$$
p_{1} A_{1}=0.319\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

This implies that first incidence matrix is as follows:
$\Lambda^{1}=I_{S}^{1}=\left(\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

The second slicing will have a form
$p_{1} A_{1}+p_{2} A_{2}=0.319\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)+0.248\left(\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

This generates the second cumulative incidence matrix. This cumulative incidence matrix includes units in the place they appeared in one of the matrices A_{1}, A_{2} :
$\Lambda^{2}=I_{S}^{2}=\left(\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

The next incidence matrices can be constructed in the same manner:

$$
\begin{aligned}
& p_{1} A_{1}+p_{2} A_{2}+p_{3} A_{3}= \\
& =0.319\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 \\
1 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)+0.248\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)+0.166\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

with cumulative incidence matrix generating from matrices A_{1}, A_{2}, A_{3} :

$$
\Lambda^{3}=I_{S}^{3}=\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

and

$$
\begin{aligned}
& p_{1} A_{2}+p_{2} A_{2}+p_{3} A_{3}+p_{4} A_{4}= \\
& =0.319\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)+0.248\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)+0.166\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)+0.103\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0
\end{array}\right)
\end{aligned}
$$

with

$$
\Lambda^{4}=I_{S}^{4}=\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

III.2. Structure of the simplices of backward linkages for each industry.

The augmentation of structure of the simplices of backward linkages for each industry can be extracted from the location of units in the set of columns of matrices $\Lambda^{1}, \Lambda^{2}, \Lambda^{3}, \Lambda^{4}$ corresponding to the given industry (see table 4).
<<insert table 4 here>>

Table 4 describes the augmentation of the structure of the backward simplices for each industry $S(R E S), S(C N S), S(M N F), S(T T F), S(S R V)$ and $S(G O V)$ with the help of the sequence of four columns corresponding to industries in the incidences $. \Lambda^{1}, \Lambda^{2}, \Lambda^{3}, \Lambda^{4}$

III.3.Analysis of the shared face matrices for cumulative incidence matrices

The numerical procedure of structural Q -analysis yields the following shared face matrices $S F^{1}, S F^{2}, S F^{3}, S F^{4}$, that correspond to the sequence of the incidence matrices $\Lambda^{1}, \Lambda^{2}, \Lambda^{3}, \Lambda^{4}$:

$$
S F^{1}=\left(\begin{array}{rrrrrr}
-1 & -1 & -1 & -1 & -1 & -1 \\
-1 & 0 & -1 & -1 & -1 & -1 \\
-1 & -1 & 3 & -1 & -1 & -1 \\
-1 & -1 & -1 & 0 & -1 & -1 \\
-1 & -1 & -1 & -1 & -1 & -1 \\
-1 & -1 & -1 & -1 & -1 & -1
\end{array}\right)
$$

with q-chain

$$
Q_{q}^{1}=\left\{\begin{align*}
& q=4:\{M N F\} \tag{6}\\
& q=3:\{M N F\} \\
& q=2:\{M N F\} \\
& q=1:\{M N F\} \\
& q=0:\{M N F\},\{T T F\}
\end{align*}\right.
$$

and the structural vector $Q^{1}=\left\{\begin{array}{llllll}4 & & & & & 0 \\ 1 & 1 & 1 & 1 & 2\end{array}\right\} ;$
$S F^{2}=\left(\begin{array}{rrrrrr}-1 & -1 & -1 & -1 & -1 & -1 \\ -1 & 0 & -1 & 0 & -1 & -1 \\ -1 & -1 & 4 & 4 & -1 & -1 \\ -1 & 0 & 4 & 5 & -1 & -1 \\ -1 & -1 & -1 & -1 & -1 & -1 \\ -1 & -1 & -1 & -1 & -1 & -1\end{array}\right)$
with the structural chain:

$$
Q_{q}^{2}=\left\{\begin{array}{c}
q=5:\{T T F\} \tag{7}\\
q=4 ;\{M N F, T T F\} \\
q=3 ;\{M N F, T T F\} \\
q=2 ;\{M N F, T T F\} \\
q=1 ;\{M N F, T T F\} \\
q=0 ;\{M N F, T T F, C N S\}
\end{array}\right.
$$

and the structural vector $Q^{2}=\left\{\begin{array}{lllllll}5 & & & & & & 0 \\ 1 & 1 & 1 & 1 & 1 & 1\end{array}\right\}$;

Further,
$S F^{3}=\left(\begin{array}{rrrrrr}-1 & -1 & -1 & -1 & -1 & -1 \\ -1 & 1 & 1 & 1 & -1 & -1 \\ -1 & 1 & 5 & 5 & 3 & -1 \\ -1 & 1 & 5 & 5 & 3 & -1 \\ -1 & -1 & 3 & 3 & 3 & -1 \\ -1 & -1 & -1 & -1 & -1 & -1\end{array}\right) 1$
with structural chain

$$
Q_{q}^{3}=\left\{\begin{array}{c}
q=5:\{M N F, T T F\} \tag{8}\\
q=4 ;\{M N F, T T F\} \\
q=3 ;\{M N F, T T F, S R V\} \\
q=2 ;\{M N F, T T F, S R V\} \\
q=1 ;\{M N F, T T F, S R V, C N F\} \\
q=0 ;\{M N F, T T F, S R V\}
\end{array}\right.
$$

and the structural vector $Q^{3}=\left\{\begin{array}{llllll}5 & & & & & 0 \\ 1 & 1 & 1 & 1 & 1 & 1\end{array}\right\}$;

Next
$S F^{4}=\left(\begin{array}{rrrrrr}-1 & -1 & -1 & -1 & -1 & -1 \\ -1 & 3 & 3 & 3 & 3 & -1 \\ -1 & 3 & 5 & 5 & 5 & -1 \\ -1 & 3 & 5 & 5 & 5 & -1 \\ -1 & 3 & 5 & 5 & 5 & -1 \\ -1 & -1 & -1 & -1 & -1 & -1\end{array}\right)$
with structural chain
$Q_{q}^{4}=\left\{\begin{array}{c}q=5:\{M N F, T T F, S R V\} \\ q=4 ;\{M N F, T T F, S R V\} \\ q=3 ;\{M N F, T T F, S R V, C N S\} \\ q=2 ;\{M N F, T T F, S R V, C N S\} \\ q=1 ;\{M N F, T T F, S R V, C N S\} \\ q=0 ;\{M N F, T T F, S R V, C N S\}\end{array}\right.$
and the structural vector $Q^{4}=\left\{\begin{array}{llllll}5 & & & & & \\ 1 & 1 & 1 & 1 & 1 & 1\end{array}\right\}$

IV. Industrial clusters and their augmentation

The consideration of the first incidence matrix Λ^{1} and its structural vector (see equation 7) will generate the appearance of the main industrial cluster in the first decomposition tendency. The chain of the highest dimension $q=3:\{M N F\}$ presents the main industrial cluster existing in the first tendency of the decomposition of the matrix of backward linkages. The structure of this cluster can be derived from the cumulative incidence matrix corresponding to the first tendency:

$$
\Lambda^{1}=\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \rightarrow\{M N F\}=\left\{\begin{array}{|l|l|l|l|l|l}
\hline \text { RES } & \text { CNS } & \text { MNF } & & S R V & \\
\downarrow
\end{array}\right\}
$$

The appearance of the next industrial cluster of the highest dimension $q=5:\{T T F\}$ can be derived from the second incidence matrix (see equation 8):

$$
\Lambda^{2}=\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \rightarrow\{\text { TTF }\}=\left\{\begin{array}{ll|l|l|l|l|l|}
\hline \text { RES } & \text { CNS } & \text { MNF } & \text { TTF } & \text { SRV } & \text { GOV } \\
\downarrow
\end{array}\right\}
$$

The merger of previous two clusters into the industrial cluster of dimension $q=4:\{M N F, T T F\}$ has a form:

This cluster appears as main cluster in the next cumulative incidence matrix (see equation 8). Its structure has the highest dimension $q=5:\{M N F, T T F\}$:
$\Lambda^{3}=\left(\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right) \rightarrow\left\{\begin{array}{c}\text { Cluster } \\ \downarrow \\ M N F\end{array}\right\}=\left\{\begin{array}{ll|l|l|l|l|l|}\hline \text { RES } & \text { CNS } & \text { MNF } & \text { TTF } & \text { SRV } & \\ \hline\end{array}\right\}=\left\{\begin{array}{ll|l|l|l|l|l}\hline \text { RES } & \text { CNS } & \text { MNF } & \text { TTF } & \text { SRV } & G O V \\ \hline\end{array}\right\}$

The augmentation of this cluster has a following form:

$$
\begin{aligned}
\left.\Lambda^{3}=\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \rightarrow \begin{array}{c}
\text { Cluster } \\
\downarrow \\
\rightarrow\{\text { MNF }
\end{array}\right\}=\left\{\begin{array}{ll|l|l|l|l|l|}
\hline \text { RES } & \text { CNS } & \text { MNF } & \text { TTF } & \text { SRV } & \\
\rightarrow\{T R V
\end{array}\right\} & =\left\{\begin{array}{ll|l|l|l|l|l|}
\hline \text { RES } & \text { CNS } & \text { MNF } & \text { TTF } & \text { SRV } & \text { GOV } \\
\hline
\end{array}\right\}
\end{aligned}
$$

The final augmentation of industrial clusters has the following form
$q=5:\{M N F, T T F, S R V\}$ (see equation 9) and:

The consecutive stages of the augmentation of industrial clusters can be presented in the form of deepening of complexity (complication) of the sectors of Chicago economy. These results imply the following complication diagram of backward Chenery-Watanabe linkages in Chicago economy in 2000:

31.5%	$M N F$
57.6%	$M N F, T T F$
73.3%	$M N F, T T F$, SRV
83.6%	$M N F, T T F$, SRV,CNS

This complication diagram of backward linkages (on the aggregation level of six economic sectors) is characteristic for Chicago economy during the all periods, 1975-2000 (see Guo et al, 2005).

The analogous Q -analysis of forward linkage sector structure is presented in table 5. In the first two decomposed levels, the number of sectors obtaining the inputs from MNF have decreased since 1980; in 1980, all the six sectors obtain MNF's input ($q=5$), but by 1985, the number decreases to four ($q=4$), and since 1990, only four sectors obtain MNF's input inside the Chicago regional economy. On the other hand, the service sector (SRV) has been sending inputs to more and more sectors, increasing from only one sector in 1980 to two in 1985 and three after 1990.

$$
\text { <<insert table } 5 \text { here>> }
$$

In analogous fashion, the complication diagram for the Chenery-Watanabe backward linkages for 2000 has a form:

```
33.7% TTF
62.1% TTF,MNF
81.2% TTF,MNF,SRV
87.1% TTF,MNF,SRV,CNS
```

This complication diagram is also characteristic for the complication of backward linkages during the period 1980-2000. It is important to note the main key sector for forward linkages is MNF, which is replaced by TTF for backward linkages.

V. Conclusion

While earlier analysis of the production structure in Chicago's economy suggested that the economy was becoming simpler (see Hewings et al. 1998) in the sense that the degree of intraregional intermediation was declining, the analysis of sectoral structure explored a more detailed picture of the changes, showing the relationships of the sectoral structure in different levels of the transaction flows. For about 50 per cent of the total transaction flows, the manufacturing and service sectors have the most noticeable changing features in that manufacturing has less and less connections with other sectors, while the service sectors, on the other hand, expanded their connections with other sectors inside the economy, further indicating their growing importance in the region.

The analysis reveals some features of the structure of Chicago's economy in the last two decades that can be summarized as follows. The results indicate that the production process in Chicago is increasingly becoming more dependent in a backward and forward sense on regions outside the Chicago economy. This result is especially true for manufacturing; the fragmentation of production has been facilitated by the fast growth of the service sectors, especially transportation and communications, that have made it possible to source inputs from distant sources and to serve markets that are more geographically diverse. This kind of production process has been observed internationally (see Jones and Kierzkowski, 1990, 2001a, 2001b). Even though fragmentation of production may happen domestically and internationally, the process has not been documented at the regional level.

The process of cluster development and its evolution remain a challenge; fragmentation may essentially result in a de-clustering process whereby major parts of the value chain of production may be spatially scattered rather than geographically concentrated. Q-analysis offers a methodology that provides a simple way to explore these structural changes. Obviously, the aggregated sectors employed here do not reveal the richness that can be explored; further, with interregional tables, the possible exists to evaluate the way in which structural changes have manifested themselves in the exchange of intra- for inter-regional interactions, thereby generating complication chains that extend far beyond the bounds of traditionally conceived geographically concentrated clusters.

References:

Atkin, R.H. (1974). Mathematical Structures in Human Affairs. London, Heineman Educational
Atkin, R.H. (1981). Multidimensional Man. Harmondsworth, UK, Penguin.
Bergman, E.M., and E.J. Feser. (2000) Industrial and Regional Clusters: Concepts and Applications, Morgantown, WV, Regional Research Institute, Web Book of Regional Science (www.rri.wvu/WebBook/Bergman-Feser/contents.htm)
Bröcker, J., Dohse, D. and Soltwedel, R. (eds.) Innovation Clusters and Interregional Competition. Heidelberg, Springer.
Carter, A.P. (1970). Structural Change in American Economy. Cambridge, Harvard University Press.

Chenery, H.B. (1953). "Regional Analysis," in H.B. Chenery, P.G. Clark and V. Cao-Pinna (eds.) The Structure and Growth of the Italian Economy.

Chenery, H.B. and Watanabe, T. (1958). "International comparisons of the structure of production." Econometrica, 26: 487-521.

Chenery, H.B. and Clark, P.B. (1959). Interindustry Economics. New York, Wiley.
Czamanski, S. (1971). "Some empirical evidence of the strengths of linkages between groups of industries in urban regional complexes," Papers of the Regional Science Association 27, 137-50.
Czamanski, S. (1974). Study of Clustering of Industries. Halifax, Nova Scotia: Institute of Public Affairs.

Czamanski, S. (1976). Study of Spatial Industrial Complexes. Halifax, Nova Scotia: Institute of Public Affairs.

Czamanski, S., and Ablas, L. A. de. (1979). "Identification of industrial clusters and complexes: a comparison of methods and findings," Urban Studies 16, 61-80.

Deutsch J. and M Syrquin, 1989. "Economic Development and the Structure of Production." Economic Systems Research, 1:447-464.

Guo, Dong, G.J.D. Hewings and M. Sonis, 2005. "Integrating Decomposition Approaches for the Analysis of Temporal changes in Economic Structure: an application to Chicago's Economy from 1980 to 2000." Economic Systems Research, 17, 297-315.

Dridi, Chokri and G.J.D. Hewings. (2002). "An Investigation of Industry Associations, Association Loops, and Economic Complexity: Application to Canada and the United States," Economic Systems Research 14, 275-296.
Harrigan, F., McGilvay, J.W. and McNicoll, I. (1980). A comparison of regional and national technical structures." Economic Journal, 90: 795-810.

Hewings, G.J.D. Sonis, M., Guo, J., Israilevich, P.R. and Schindler, G.R. (1998) "The hollowing out process in the Chicago economy, 1975-2015," Geographical Analysis, 30, 217-233.

Holub, H.W. and Schnabl, H.(1985) "Qualitative input-output analysis and structural information," Economic Modeling, 2, 67-73.
Holub, H.W., Schnabl, H. and Tappeiner, G. (1985) Qualitative input-output analysis with variable filter, Zeitschrift fur die gesamte Staatswwissenschaft, 141, 282-300.
Israilevich, P.R., Hewings, G.J.D., Sonis, M., and Schindler, G.R. (1997) "Forecasting structural change with a regional econometric input-output model," Journal of Regional Science 37, pp. 565-590.

Jones, R.W and Kierzkowski, H. (1990). "The Role of Services in Production and International Trade: A Theoretical Framework," in R.W. Jones and A. Krueger (ed) The Political Economy of International Trade, Oxford, Basil Blackwell.

Jones, R.W and Kierzkowski, H. (2001a) "A Framework For Fragmentation," in S.W. Arndt \& H. Kierzkowski (ed) Fragmentation: New Production Patterns in the World Economy, Oxford university press, pp. 17-34.

Jones, R.W and Kierzkowski, H (2001b) "Horizontal Aspects of Vertical Fragmentation," in L.K. Cheng \& H. Kierzkowski (ed) Global Production and Trade in East Asia. Kluwer Academic Publishers, pp.33-51.

Long N B Jr, (1970). "An input-output comparison of the economic structure of the U. S. and the USSR," Review of Economics and Statistics, 52, 434-441.

Matthews R C O, Feinstein C and C Odling-Smee (1982). British Economic Growth, Oxford, Oxford University Press.
Ohkawa, K. and Rosovsky, H. (1973). Japanese Economic Growth: Trend Acceleration in the Twentieth Century, Stanford, Stanford University Press.

Porter, M.E. (1990) The Competitive Advantage of Nations, New York, Free Press.
Schnabl, H. and Holub, H.W. (1979) "Qualitative und quantitative aspekte der input-output analyse," Zeitschrift für die gesamte Staatswissenschaft, 135, 657-678.
Schnabl, H. (1993). "The evolution of production structures - analyzed by a Multi-Layer Procedure." Paper presented to the 10th International Conference on Input-Output Techniques, Seville, Spain.

Schnabl, H. (1994) "The evolution of production structures analyzed by a multi-layer procedure," Economic System Research, 6, 51-68.
Song, B.N. (1977). "The production structure of the Korean economy: international and historical comparisons." Econometrica, 45, 147-162.
Sonis, M. (1988). "Q-analysis of migration streams: spatio-temporal invariability and relative logistic dynamics," Paper presented at the 35th North American Meeting of the Regional Science Association, Toronto, Canada.

Sonis, M. and Hewings, G.J.D. (1988) "Superposition and Decomposition Principles in Hierarchical Social Accounting and Input-Output Analysis," in F.J. Harrigan and P.G. McGregor (eds.), Recent Advances in Regional Economic Modelling (London, Pion), pp. 46-65.

Sonis, M. and Hewings, G.J.D. (1998). "Theoretical and Applied Input-Output Analysis: A New Synthesis. Part I: Structure and Structural Changes in Input-Output Systems." Studies in Regional Science, 27, 233-256.
Sonis, M. and Hewings, G.J.D., (2000) "Introduction to input-output structural Q-analysis," Discussion Paper 00-T-1, Regional Economic Applications Laboratory, University of Illinois, http: \backslash www.real.uiuc.edu
Sonis, M., Hewings, G.J.D. and Bronstein, A. (1994). "Structure of Fields of Influence of Economic Changes: a Case Study of Changes in the Israeli Economy." Discussion Paper 94-T10, Regional Economic Applications Laboratory, University of Illinois, http:
www.real.uiuc.edu.

Table 1 Sector Definitions in the Chicago Input-Output Table

Sector	Name	Content
1	RES	Resources
2	CNS	Construction
3	MNF	Non-durable and durable Goods
4	TTF	Transportation, Trade, FIRE
5	SRV	Services
6	GOV	Government

Table 2. Total Flows for the Chicago Region, 2000

	RES	CNS	MNF	TTF	SRV	GOV	Total
RES	29	25	640	183	76	6	$\mathbf{9 5 9}$
CNS	277	816	2892	5096	4152	574	$\mathbf{1 3 8 0 6}$
MNF	453	4668	17534	9338	13640	474	$\mathbf{4 6 1 0 6}$
TTF	431	2578	10697	12041	9284	475	$\mathbf{3 5 5 0 6}$
SRV	210	2255	6452	8153	6860	229	$\mathbf{2 4 1 5 9}$
GOV	15	49	566	617	344	41	$\mathbf{1 6 3 3}$
Total	$\mathbf{1 4 1 6}$	$\mathbf{1 0 3 9 1}$	$\mathbf{3 8 7 8 1}$	$\mathbf{3 5 4 2 8}$	$\mathbf{3 4 3 5 6}$	$\mathbf{1 8 0 0}$	$\mathbf{1 2 2 1 7 1}$

Note: RES (resources), CNS (construction), MNF (manufacturing), TTF (trade, transportation), SRV (services), GOV (government)

Table 3 The Coefficient Table and Largest Entries (by column)

	1	2	3	4	5	6
1	0.020662	0.002402	0.016503	0.005169	0.002202	0.00358
2	0.195747	0.078485	0.074577	0.143844	0.120843	0.318719
	0.319912	0.449218	0.452127	0.263576	0.397018	0.263391
4	0.304647	0.248104	0.275841	0.339856	0.270234	0.263987
5	0.14828	0.217044	0.166361	0.230131	0.19968	0.12735
6	0.010752	0.004746	0.014591	0.017424	0.010023	0.022973

Table 4. The augmentation of the simplices of backward linkages for each industry

$S_{0}{ }^{\text {(}}$ RES $)$	$S^{\circ}($ RES $)$	$S_{2}{ }^{\text {(RES }}$)	$S^{\text {b }}$ (RES $)$	$S_{0}{ }^{\text {(}}$ (CNS $)$	$S^{\text {b }}$ (CNS $)$	$S_{2}{ }^{\text {(}}$ (CNS $)$	$S_{2}{ }^{\text {(}}$ (CNS $)$
		CNS	CNS				
MNF							
	TTF	TTF	TTF		TTF	TTF	TTF
			SRV			SRV	SRV

$S_{0}{ }^{\text {b }}$ (MNF)	$S_{1}{ }^{\text {(}}$ MNF)	$S_{2}{ }^{\text {(}}$ MNF)	$S_{2}{ }^{\text {(}}$ MNF)	$S_{0}{ }^{\text {(}}$ TTF)	$S_{1}{ }^{\text {b }}$ (TTF)	$S_{2}{ }^{\text {b }}$ (TTF)	$S_{3}{ }^{\text {b }}$ (TTF)
							CNS
MNF	MNF	MNF	MNF		MNF	MNF	MNF
	TTF						
		SRV	SRV			SRV	SRV

$S_{0}{ }^{\text {b }}(S R V)$	$S_{1}{ }^{\text {(}}$ (SRV)	$S_{2}{ }^{\text {b }}$ (SRV)	$S_{3}{ }^{\text {b }}$ (SRV)	$S_{0}{ }^{\text {b }}$ (GOV $)$	$S_{1}^{\text {b }}$ (GOV)	$S_{1}^{\circ}(\mathrm{GOV})$	S_{3} (GOV)
		CNS	CNS	CNS	CNS	CNS	CNS
MNF	MNF	MNF	MNF				MNF
	TTF	TTF	TTF		TTF	TTF	TTF
			SRV				SRV

Table 5 Forward linkages sectoral structure

1980	1985	1990	1995	2000
$\mathrm{q}=3\{\mathrm{TTF}\}$	$\{\mathrm{TTF}\}$	$\{\mathrm{TTF}\}$	$\{\mathrm{TTF}\}$	$\{\mathrm{TTF}\}$
$\mathrm{q}=2\{\mathrm{TTF}\}$	$\{\mathrm{TTF}\}$	$\{\mathrm{TTF}\}$	$\{\mathrm{TTF}\}$	$\{\mathrm{TTF}\}$
$\mathrm{q}=1\{\mathrm{TTF}\}\{\mathrm{MNF}\}$	$\{\mathrm{TTF}\}\{\mathrm{MNF}\}$	$\{\mathrm{TTF}\}\{\mathrm{MNF}\}$	$\{\mathrm{TTF}\}\{\mathrm{MNF}\}$	$\{\mathrm{TTF}\}\{\mathrm{MNF}\}$
$\mathrm{q}=0\{\mathrm{TTF}\}\{\mathrm{MNF}\}$	$\{\mathrm{TTF}\}\{\mathrm{MNF}\}$	$\{\mathrm{TTF}\}\{\mathrm{MNF}\}$	$\{\mathrm{TTF}\}\{\mathrm{MNF}\}$	$\{\mathrm{TTF}\}\{\mathrm{MNF}\}$
CP 10.329	0.332	0.332	0.335	0.337

$\mathrm{q}=5\{\mathrm{MNF}\}$

$\mathrm{q}=4\{\mathrm{MNF}\}$	\{MNF \}			
$\mathrm{q}=3\{\mathrm{MNF}, \mathrm{TTF}\}$	\{MNF $\}$, $\{\mathrm{TTF}$ \}	\{MNF $\},\{\mathrm{TTF}\}$	\{MNF $\},\{\mathrm{TTF}\}$	\{MNF $\},\{\mathrm{TTF}\}$
$\mathrm{q}=2\{\mathrm{MNF}, \mathrm{TTF}\}$	\{MNF, TTF \}	\{MNF $\},\{\mathrm{TTF}\},\{\mathrm{SRV}\}$	\{MNF $\},\{\mathrm{TTF}\},\{\mathrm{SRV}\}$	\{MNF $\},\{\mathrm{TTF}\},\{\mathrm{SRV}\}$
$\mathrm{q}=1\{\mathrm{MNF}, \mathrm{TTF}\}$	$\{\mathrm{MNF}, \mathrm{TTF}\},\{\mathrm{SRV}\}$	\{MNF, TTF, SRV \}	\{MNF, TTF, SRV\}	\{MNF, TTF, SRV \}
$\mathrm{q}=0\{\mathrm{MNF}, \mathrm{TTF}, \mathrm{SRV}\}$	\{MNF, TTF, SRV \}	\{MNF, TTF \}, \{SRV \}	\{MNF, TTF, SRV \}	\{MNF, TTF, SRV \}
CP2 0.587	0.607	0.615	0.619	0.621
$\mathrm{q}=5\{\mathrm{MNF}, \mathrm{TTF}\}$	\{MNF, TTF \}	\{MNF, TTF \}	\{MNF, TTF $\}$	\{MNF, TTF \}
$\mathrm{q}=4\{\mathrm{MNF}, \mathrm{TTF}, \mathrm{SRV}\}$	\{MNF, TTF, SRV \}			
$\mathrm{q}=3\{\mathrm{MNF}, \mathrm{TTF}, \mathrm{SRV}\}$	\{MNF, TTF, SRV\}	\{MNF, TTF, SRV \}	\{MNF, TTF, SRV \}	\{MNF, TTF, SRV \}
$\mathrm{q}=2\{\mathrm{MNF}, \mathrm{TTF}, \mathrm{SRV}\}$	\{MNF, TTF, SRV \}			
$\mathrm{q}=1\{\mathrm{MNF}, \mathrm{TTF}, \mathrm{SRV}\}$	\{MNF, TTF, SRV\}	\{MNF, TTF, SRV \}	\{MNF, TTF, SRV\}	\{MNF, TTF, SRV \}
$\mathrm{q}=0\{\mathrm{MNF}, \mathrm{TTF}, \mathrm{SRV}\}$	\{MNF, TTF, SRV \}	\{MNF, TTF, SRV \}	\{MNF, TTF, SRV \}	\{MNF, TTF, SRV
CP3 0.770	0.794	0.801	0.808	0.812
$\mathrm{q}=5\{\mathrm{MNF}, \mathrm{TTF}\}$	\{MNF, TTF \}	\{MNF, TTF \}	\{MNF, TTF, SRV \}	\{MNF, TTF, SRV
$\mathrm{q}=4\{\mathrm{MNF}, \mathrm{TTF}, \mathrm{SRV}\}$	\{MNF, TTF, SRV \}			
$\mathrm{q}=3\{\mathrm{MNF}, \mathrm{TTF}, \mathrm{SRV}\}$	$\{\mathrm{CNS}, \mathrm{MNF}, \mathrm{TTF}, \mathrm{SRV}$ \}	$\{\mathrm{MNF}, \mathrm{TTF}, \mathrm{SRV}\}$	\{MNF, TTF, SRV \}	$\{\mathrm{CNS}, \mathrm{MNF}, \mathrm{TTF}, \mathrm{SRV}\}$
$\mathrm{q}=2\{\mathrm{CNS}, \mathrm{MNF}, \mathrm{TTF}, \mathrm{SRV}\}$	\{CNS, MNF, TTF, SRV \}			
$\mathrm{q}=1\{\mathrm{CNS}, \mathrm{MNF}, \mathrm{TTF}, \mathrm{SRV}\}$	\{CNS, MNF, TTF, SRV \}			
$\mathrm{q}=0\{\mathrm{CNS}, \mathrm{MNF}, \mathrm{TTF}, \mathrm{SRV}\}$	\{CNS, MNF, TTF, SRV \}	\{CNS, MNF, TTF, SRV\}	\{CNS, MNF, TTF, SRV \}	\{CNS, MNF, TTF, SRV \}
CP4 0.836	0.849	0.858	0.866	0.871

λ	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10
S1	1	0	1!	0	0	1	0	-1	: 1	1
S2	1	1	0	0	0	0	1	1	0	0
S3	0	1	1	1	1	0	0	1	0	1
S4	1	0	1	0	0	0	0	0	0	0
S5	0	1	0	0	0	1	0	0	1	1
S6	0	1	0	0	0	0	0	1	0	0
S7	0	0	1	0	0	1	0	0	0	0
S8	0	1	0	0	1	0	0	1	0	1
S9	1	0	1	0	0	1	0	0	0	0
S10	0	1	¢	0	0	0	1	! 1	¢!	0

Shared faces are indicated by cells with a dotted box

Complex

Figure 1: Structure of Relationships: Simplices, Shared Faces and a Complex

[^0]: ${ }^{1}$ This section draws on Guo et. al, (2005)

