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ABSTRACT. Matrix adjustment methods are very useful in regional economics to project or update 
matrices.  The principle consists of finding the matrix that is the closest to an initial matrix subject to 
column and row sum totals of a target matrix.  Many authors have tried to determine which matrix-
adjustment method is the best from an empirical point-of-view using real data.  In order to address the 
question from a theoretical point-of-view, the article examines the simpler problem of vector adjustment 
and then returns consideration of matrices.  The information-lost minimization (biproportional methods 
and RAS) leads to a multiplicative form and generalizes the linear model.  On the other hand, the distance 
minimization that leads to an additive form tends to distort the data by giving a result asymptotically 
independent of the initial matrix.  As a result, it is possible to conclude unambiguously that biproportional 
methods and RAS are the best for matrix adjustment because they generalize the linear model and are 
asymptotically the most respectful of the initial matrix while they do not generate surprising negative 
terms.  Moreover, measuring the gap between the projection and the target to determine which method is 
the best is not a good idea because the gap depends on the data; on the contrary, the gap can be 
interpreted in terms of a structural effect that is a general form of the shift-share method. 
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1 Introduction 

Matrix adjustment is intensively used in economics, but also in other fields.  In economics, the 

most popular application is the elaboration in the System of National Accounts to obtain a matrix 

of interindustrial, regional, interregional or international flows.  These matrix adjustment 

methods serve to equilibrate the accounting matrices or to derive present accounting matrices 

when they are unknown and when only present partial information (particularly about column 

and row sums) and past tables are given, or to make a forecast of future accounting matrices.  

Matrix adjustment methods can also be used to project a matrix in order to make it comparable to 

another matrix to identify the structural changes between both matrices. 

The principle of matrix adjustment methods2 consists of finding the matrix Ẑ  that is the closest 

to an initial matrix 0Z ≥  with respect of the margins (the column and row sum totals) of a target 
                                                           

1 Many thanks to Geoffrey Hewings for his useful remarks. 
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matrix 0Z ≥* ; Z and *Z  could be two matrices for two different countries or two matrices for 

the same country but for two different years (this paper is limited to the case of equality 

constraints with respect to the margins totals), expressed in the same units.  The result is denoted 

( )*ˆ ZZ,Z K= , where K is the method of matrix adjustment chosen to perform the operation.  The 

most popular method of matrix adjustment is RAS, but many other methods can be used.  These 

methods can be classified into two families: the so-called "additive" and "multiplicative" 

methods.  The precise detailed differences will be developed later.  Now it is sufficient to 

understand that Ẑ  obtained by additive methods is of the general form QZP ++ : in this 

category, the procedure that minimizes the distance between Z and Ẑ  would be included.  The 

general form of Ẑ  found by multiplicative methods is QZP : in this last category, the well-

known method RAS, also called biproportion, would be perhaps the most familiar technique.  

The authors who want to compare the merits of both methods3 or to determine if one method is 

accurate (often: RAS)4 tend to use real data such as international, national or regional data, then 

they make projections with both methods and they compare the results to decide which method is 

the best by measuring the gap between the projection and the target.  This approach is empirical, 

that is, it is always limited by the data; by looking at empirical results, one is never sure that one 

method is better than another while the contrary could be true with different data.  As many 

things have been said about the comparative merits and drawbacks of these methods from an 

empirical point-of-view, the aim of this paper is to decide which family of methods is the better 

from a theoretical point-of-view.  In this paper, the match will be reduced to a duel between the 

two champions of each side, the minimization of distance and RAS.  Considering the theoretical 

approach with matrices is not so easy, we will begin the exploration with vectors, thereby 

returning to a more simple problem, vector adjustment.   A vector can be considered as a very 

simple case of a matrix, where one dimension is equal to 1, i.e., ( )n,1  or ( )1,n .  The case of 

vectors will also serve as a counter-example to dismiss some ideas often developed in matrix 

adjustment problems.  However, as a matrix is not only a juxtaposition of vectors, the matrix 
                                                                                                                                                                                           

2 This paper is limited to non negative matrices; this excludes from the discussion GRAS 
(Junius and Oosterhaven, 2003). I will explain later why this choice has been made. 

3 See for example Jackson and Murray (2004). 
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adjustment problem is bi-dimensional, while the vector adjustment problem is mono-

dimensional, it will be necessary to verify each time if the properties found for vectors are valid 

for matrices. 

2     Matrix Adjustment 

Two main families of methods can be listed to serve as the projector K, the additive methods (the 

projected matrix will be denoted AẐ , the projector AK ) and the multiplicative methods (the 

projected matrix will be denoted MẐ , the projector MK ).  All must respect the same set of 

constraints: 

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

≡=

≡=

∑ ∑

∑ ∑

= =
•

=
•

=
n

i

n

i
jijij

m

j
i

m

j
ijij

jzzz

izzz

1 1

**

1

*

1

*

 allfor  ˆ

 allfor  ˆ
 

2.1  Additive Methods 

Among additive methods, there is the minimization of the very familiar Least Squares, that is, 

the square of the distance between AẐ  and Z (Almon, 1968), a particular case of the Hölder 

norm denoted 
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The solution is denoted (how it is derived is recalled in annex 1):  

(1)  wA −++= QZPẐ  

where 
mn
zzw •••• −=

*

. 

                                                                                                                                                                                           
4 See for example Miernyk (1977), Hewings and Janson (1980), Miller and Blair (1985), 

Israilevich (1986), Szyrmer (1987), Lahr (2001) and de Mesnard and Miller (2006). 
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P and Q are matrices of which form is 
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A particular case is •••• = zz*  so 0=w  and QZPZ ++=Aˆ . 

Other additive methods are: 

| the Absolute Differences, which is the Hölder norm where 1=h  (this case is not 

differentiable, and must be solved by the simplex after separating the positive cases from the 

negative cases), 

| the Weighted Absolute Differences (Lahr, 2001), i.e., ∑∑
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| the Normalized Square Differences (Deming and Stephan, 1940), i.e., 
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Most of these methods are not linear and need to be linearized (see also Senior and Wilson 

(1974)) before finding a solution by linear programming software but one must remember that 

linearization is not the panacea because it is only valid around the linearization point, assuming 

that the function is not so far from the hyperplane of linearization at the optimum. 

                                                           
5 See in Hewings and Janson (1980, pp. 852-3) how the solution of the four last methods 

can be derived. 
6 One can cite also Friedlander's method (1961) or the ASAM method (Durieux and 

Payen, 1976), used in the PROPAGE model by the INSEE (Institut National de la Statistique et 
des Etudes Economiques in France) to estimate the formation of the gross fixed-capital of firms 
in the French National Accounting (Hoh Ta Khanh, 1982, pp. 204-9). 
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2.2 Multiplicative Methods 

Among multiplicative methods, there is RAS and other biproportional methods.7  The RAS 

method (Stone, 1961; Stone and Brown, 1962; Stone, Bates and Bacharach, 1963) is often 

considered as appropriate for adjusting input-output tables (Fréchet, 1960; Froment and Lenclud, 

1976), in order to project, update (Paelinck and Waelbroeck, 1963; Lynch, 1986), or estimate 

them (Allen and Lecomber, 1975; Thionet, 1976), and so forth (see also Sentis and Thionet, 

1961; and Lecomber, 1975).8  However, RAS was developed under the patronage of operations-

research and it has the reputation for lacking theoretical foundations, even if Bacharach (1970) 

developed some theoretical properties (and particularly, the existence, uniqueness and 

convergence of the solution). 9 

The methods of this group can be derived by solving Kullback and Liebler's minimization of 

information loss (Kullback and Liebler, 1951; Kullback, 1959; Theil, 1967, 1971; Uribe, de 

Leeuw and Theil, 1965; Snickars and Weibull, 1977): 
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generating (the derivation of the solution poses a difficulty; see annex 1): 10 

(4)  QZPZ =Mˆ  

                                                           
7 The analysis is limited to matrices, that is, to tables of which elements are equipped 

with two indexes i and j. See Cole (1992) for the case with three indexes. 
8 However, from Miernyk (1977), RAS has been criticized because adding extra informa-

tion can make things worse. After Miernyk's work, some other authors have also found such a 
problem: Miller and Blair (1985), Israilevich (1986), Szyrmer (1987) and Lahr (2001). See de 
Mesnard and Miller (2006) for a synthetic discussion and some recalculations. 

9 Stone and Leontief also… 
10 Alternately, it could be possible to solve ∑∑
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 but this requires making first a first-order linear approximation by using a 
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P and Q are diagonal matrices: 

(5)  
∑

=

•= m

j
ijj

i
i

zq

zp

1

*

, for all i, and 
∑

=

•= n

i
iji

j
j

zp

z
q

1

*

 for all j 

It must be also noted that the system (5) is solved iteratively, for example: 
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The properties of equations (4) and (5) have been explored by Snickars and Weibull 

(1977).  The series ( )
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series can equivalently be derived for the jq ).  Unfortunately the fixed-point cannot be found 

analytically but only numerically by an iterative process: it is unique, existing and converging 

because the function I is a convex and continuously derivable function, defined on a compact set. 

Nevertheless, there are some cases where the solution could not exist;11 each row agent must be 

connected to a sufficient number of column agents to be able to sell its production and 

conversely for column agents (they must be able to buy what they need).  For example, consider 

the matrix 
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there is no arc from vertex 1 to 2 so MẐ  will necessarily have a zero in place ( )2,1 .  Consider 

the target matrix 
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=Z ; it is impossible to find MẐ  because column agent 2 can buy 

only 2 from itself while he needs 5; row agent 1 has to buy 10 but all of these 10 must go to 

                                                                                                                                                                                           
Taylor expansion to fall on a 2χ  expression (Kadas and Klafsky, 1976). See a discussion in 
Hewings and Janson (1980, pp. 853-4). 

11 See Macgill (1977). 
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himself while he can absorb only 7.  Except these impossible cases, which must be interpreted as 

the definition set of the function, the biproportional problem always has  a solution. 

Bachem and Korte (1979a and b) have demonstrated that equations (4) and (5) are 

computationally the most efficient but (4) and (5) can also be generated from the entropy 

maximization principle (Jaynes, 1957a and b; Wilson, 1970; Kapur, 1989): 
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where ijc  is some transaction cost involved in moving from i to j and C is the total transaction 

cost.12  One passes from this model to the information loss minimization and vice-versa by 

posing ( ) ijijijij zccz log1exp
γ

γ −=⇔−= , denoted ijij zkc log=  for all i, j, where γ  is the 

multiplier associated to the constraint of cost and γ1−=k  could be interpreted as a dimension 

factor. 

The model can also be derived from the theory of gravitation (Nijkamp, 1975), the interaction 

minimization principle (Watanabe, 1969; Guiasu, 1979), the probabilistic multinomial model 

(Choukroun, 1975) and even by the theory of utility (Niedercorn and Bechdolt, 1969; Niedercorn 

and Moorhead, 1974).  It is demonstrated that these algorithms generate (5) after some 

transformations (Vermot-Desroches, 1986; de Mesnard, 1988).   Other methods are more or less 

closely related to these, such as the theory of movements (Alonso, 1978) (Ledent, 1981), 

Gumbel's method (Thionet, 1976), the TAU and UAT methods (Snower, 1970). 

3 Vector Adjustment 

A vector is also a matrix with only one column (or one row): not only does this make the 

problem simpler to handle but it also this helps clarify some conclusions visible with matrices.  

However, it is not possible to pass from the matrix adjustment problem to the vector adjustment 

problem simply by posing 1=m  (or 1=n ) because the resulting problem would be trivial: 
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considering two vectors of real numbers, +ℜ∈ nx  and +ℜ∈ n*x , the set of constraints would 

become 
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Hence, the problem of vector adjustment must be of the following form.  Considering two 

vectors of real numbers, expressed in the same units, +ℜ∈ nx  and +ℜ∈ n*x , what vector 
+ℜ∈ nx̂  is the closest to a given "initial" vector x in the sense of some criterion to be defined 
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A very simple example could be the following: consider the vector ( )203050'=x , the 

prime denoting the operation of transposition; its sum is equal to 100=•x .  What is the vector x̂  

whose sum is equal to 200* =•x ?  Everyone, even a young schoolboy (after formulating the 

question in more familiar terms), would answer to a so simple question: it is the vector 

( )4060100'ˆ =x !  Everyone knows the answer because this is the linear model: one assumes that 

everything changes proportionally.  However, it is not so simple. The question is: from where 

does this result come? 

To facilitate a vector adjustment, we will consider the above two families of methods, the 

additive one and the multiplicative one.  It will be demonstrated that, even if they could seem 

equivalent, only one allows for the derivation of the linear model, the other being affected by 

some serious drawbacks.  All the derivations are very simple but they will be exposed 

completely to be sure that the reader is convinced by the rather surprising results. 

3.1 Additive Formulation 

The most common idea could be to use the very familiar Least Squares minimization, that is, of 

the square of the Euclidean distance in order to find the projected vector denoted Ax̂ . 

(7)  ( )∑
=

−=
n

i
i

A
ix

xxSSSS
A
i 1

2

ˆ
ˆ;min , s.t. *

1

ˆ •
=

=∑ xx
n

i

A
i  

                                                                                                                                                                                           
12 In commodity flow matrices, this cost will normally be the transportation cost but it 

could also be a generalized cost involving non line-haul charges (e.g., waiting, transfer costs) 
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where ∑=•
i

ixx ** .  Criterion (7) amounts to finding the orthogonal projection (or the quadratic 

mean) created by Gauss.  Minimizing the distance or its squares is the same thing (apart from the 

fact that one has to discard the case 0=SS ): as SS
A
ix̂

min  devolves to computing 

0
ˆ2

10
ˆ

=⇔= A
i

A
i xd

dSS
SSxd

SSd , the derivatives of SS and SS  have the same zeros (but one 

must impose 0≠SS  when SS  is minimized).13  More formally, given two functions g and f, 

min (g o f) is identical to min f as soon as g is a monotonous increasing function (the symbol o 

denotes the composition of functions); here f is the sum of the squares and g is the square root.  

To summarize, a distance and its square have the same minimum, even if the square of a distance 

is not a distance.  The solution is (see annex 1): 

(8)   i
A
i xbx +=ˆ  for all i, or xbx +=Aˆ  

where the fixed term 
n

xxb •• −=
*

 is added to ix  to obtain A
ix̂  and ( )1...1' b=b .  The projected 

point Ax̂  is the orthogonal projection of x. 

Going back to the above example, ...33.33
3

100200 =−=b , so the projected vector is 

( )...33.53...33.63...33.83'...33.33'ˆ =+= xxA .  Two other examples (a consumption function and 

a production function) are provided in annex 2. In figure 1, A is the initial point, B is the 

projection of A on the subspace DE defined by the constraint; the distance between A and B is 

smaller than the distance between A and any point different to B on the straight line DE. 

Figure 1 about here 

3.2  Multiplicative Formulation 

With the multiplicative formulation, the projected vector denoted Mx̂  could be obtained from the 

minimization of the information loss: 

                                                           
13 In other words, a distance is not differentiable at the origin but the sum squares is al-

ways differentiable. 
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The solution is: 

(10)  i
M
i xax =ˆ  for all i, or xax =Mˆ  

where 
•

•=
x
xa

*

 is fixed and is multiplied by ix  to obtain M
ix̂ . 

Again, going back to the example, 2
100
200 ==a , so the projected vector is 

( )4060100'2'ˆ == xxM  as suggested above.  See annex 2 for other examples.  In figure 2, the 

origin O, the initial point A and the projection C are aligned. 

Figure 2 about here 

Note that the generalization of the vector adjustment problem as a matrix adjustment problem is 

not the above matrix adjustment problem.  For example, the generalization of the multiplicative 

vector adjustment problem is the proportional matrix adjustment problem. 

 

4 Comparative Properties of the Methods4.1 Asymptotic Properties 

It is obvious that any projector must retain its properties when both matrices or both vectors 

move away, that is, when one matrix or vector goes to infinity, i. e., when the projection sub-

space goes far from the initial point (or when the line DE goes far from the origin toward D'E' 

and beyond to infinity).   In the world of vectors, one or more of the coordinates of vector *x  tend 

toward infinity; considering the examples in annex 2, this could mean that the consumer's wealth 

or the output of the firm are infinitely increased.  In the world of matrices, this could mean that 

the margins of Z* are much larger than those of Z: Z and Z* describe an economy for two very 

distant years or two very different countries.  If a method is not asymptotically correct, it could 

be dangerous to apply it. By considering the asymptotic properties of the estimator, one avoids 

using a method that may have some undesirable properties.   
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4.1.1 Vectors 

Property 1. When *
•x  tends toward infinity, with the orthogonal projector, projected point's 

slopes, A
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 for all i, j).  Conversely, with the proportional projector, slopes do not 
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In figure 1, the projected point B' tend to go on the line Of  (of which slope is equal to 1) when 

D'E' tend to infinity; in figure 2, the projected points C and C' remain on the same straight line 

OA passing through the origin, even asymptotically. 

Proof. 
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(10) immediately shows that the two vectors Mx̂  and x are, and remain, collinear: the quantity a 

tends toward infinity as the quantities M
jx̂  but 

i

j
M
i

M
j

x
x

x
x

=
ˆ
ˆ

 for all i, j. x 

In the above example, ( )203050'=x  and ∞→•
*x ; so ( )111'ˆlim

*
kA

x
=

∞→•

x  but 

( )2.3.5.'ˆlim
*

kM

x
=

∞→•

x , with k arbitrarily large: Ax̂  becomes independent of x (even if it remains 

the closest to x in terms of distance) but Mx̂  remains linearly linked to x. 
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4.1.2 Matrices 

Let us return to the matrices.  To study the asymptotic properties, considers that matrix *Z  that 

goes "far from" matrix Z. 

Theorem 1. Assume that all *
•iz  and *

jz•  tend toward infinity.  The projected matrix AẐ  tends to 

be asymptotically uniform and independent of the initial matrix Z: SZ kA

z
z

j

i

=
∞→
∞→

•

•

ˆlim
*

*
, with k 

arbitrarily large, where S is the unit matrix, that is, 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1...1
......
1...1

S .  The projected matrix MẐ  

tends to remain asymptotically biproportional to Z: QZPZ kM

z
z

j

i

=
→∞
→∞

•

•

ˆlim
*

*
, with k arbitrarily large 

and P and Q finite. 

Theorem 1 means that the orthogonal projection is asymptotically meaningless but also it means 

that even when we are not at infinity, data are distorted with additive methods. 

Proof.  

For the additive method, assume that the margins *
•iz  and *

jz•  tend toward infinite at the speed 1 

so *
••z  tends toward infinite at the speed nm and 

mn
zzw •••• −=

*

 tends toward infinity at the speed 

1; 
m

zzp ii
i

•• −=
*

 and 
n

zz
q jj

j
•• −

=
*

 tend also toward infinity at the speed 1, for all i, j. Hence, 

from (1), each term A
ijẑ  also tends toward infinity at the speed 1; consequently any slopes A

ij

A
ij

z
z

''

'

ˆ
ˆ

 for 

all i or A
ji

A
ji

z
z

''

'

ˆ
ˆ

 for all j tend toward 1.  Finally SZ kA

z
z

j

i

=
∞→
∞→

•

•

ˆlim
*

*
, with k arbitrarily large. 

For the multiplicative method, assume that all the margins *
•iz  and *

jz• , for all i, j, are multiplied 

by k arbitrarily large, that is, **
•• = ii

L zkz  for all i and **
jj

L zkz •• =  for all j.  Thus, following (6), 

i.e., if the initialization of the iterative process is done by the p, ( )1+t
jq  is multiplied by k, that is, 
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( ) ( )11 ++ = t
j

t
j

L qkq  but ( ) ( )11 ++ = t
i

t
i

L pp  for all i; if the initialization is such that the terms q, 

the terms p are multiplied by k and the terms q remain fixed.  Finally, remembering that 

biproportion is hyperbolically homogenous, i.e., if the p are all multiplied by anyδ , the q are all 

divided by δ , one has M
ij

M
ij

L zkz ˆˆ = ( ) ( ) ( ) ( )1111 ++++ =⇔ t
jij

t
i

t
j

L
ij

t
i

L qzpkqzp , which tends toward 

infinity if ∞→k  but remains asymptotically biproportional to Z and the ratio M
ij

L

M
ij

L

z
z

''

'

ˆ
ˆ

 for all i and 

M
ji

L

M
ji

L

z
z

''

'

ˆ
ˆ

 for all j remain unchanged: M
ij

M
ij

M
ij

L

M
ij

L

z
z

z
z

''

'

''

'

ˆ
ˆ

ˆ
ˆ

=   for all i and M
ji

M
ji

M
ji

L

M
ji

L

z
z

z
z

''

'

''

'

ˆ
ˆ

ˆ
ˆ

=  for all j. x 

4.2 Negative Terms 

4.2.1 Vectors 

Property 2. In some cases, the orthogonal projector could generate some negative components on 

the projected vector Ax̂ , while this is impossible with the proportional projector for Mx̂ .  In the 

world of vectors, this implies some difficulties for most economic applications, such as negative 

inputs for production functions or negative uses for consumption functions, etc. (see the 

examples in annex 2). 

Proof. 

For the orthogonal projector, how b works in (9) obviously does not depend on the fact that (7) is 

written, either ( )∑
=

−
n

i
i

A
ix

xx
A
i 1

2

ˆ
ˆmin  or ( )∑

=

−
n

i

A
iix

xx
A
i 1

2

ˆ
ˆmin .  However, according to (8), as b could be 

negative as soon as •• < xx* , some terms in *
ix  could be negative while some other terms remain 

non negative.  More precisely, a negative component will appear in (8) as soon as 

( )iiii
xnxxbx minmin * −<⇔−< •• . 

For the proportional projector, the proof is immediate from (10): 0>a  so 0ˆ >M
ix  for all i. x 

 Returning to the above example, when 50* =•x , ( ) ...66.16100503
1 −=−=b  so 

( )...33.3...33.13...33.33'ˆ =Ax : all components are still nonnegative. If 
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( ) 40203100min* =×−=−= •• ii
xnxx , then ( ) 20100403

1 −=−=b  so ( )01030'ˆ =Ax : 0ˆ3 =Ax ; 

but when 10* =•x , ( ) 30100103
1 −=−=b  so  ( )10020'ˆ −=Ax : Ax3ˆ  is negative. 

4.2.2 Matrices 

Returning to matrices, it is known that additive methods may generate some negative terms in 
AẐ  even if they are not present in Z (Thionet, 1976).  A negative A

ijẑ  is surprising if the 

corresponding ijz  is not negative.  In matrices, following graph theory, they are reversed arcs; so 

if ijz  is the flow of commodity i sold by sector i to sector j, what could be A
ijẑ  if it is negative?  It 

is possible to introduce a set of non-negativity constraints (Froment and Lenclud, 1976) but the 

solutions will tend to accumulate themselves on the borders of the convex constraint set (instead 

of being negative, a A
ijẑ  will become to be equal to zero); again, this is unrealistic.14 

Biproportional methods guarantee the non negativity of the solution; if there are no negatives in 

Z, there will be no negatives in MẐ  (a positive is projected as a positive, a zero as a zero).  This 

is clearly an important advantage.15 

The following obvious theorem holds: 

                                                           
14 If Z and Z* are non negative one must not accept negative terms in the projection. 

Why? First, if it is always hard to give an economic interpretation to negative terms in Z (e.g., 
what is the meaning of a negative flow of steel from Steel industry to Cars industry). It is diffi-
cult to explain how a positive can turn out to be a negative after projection (e.g., how a positive 
flow of steel from Steel industry to Cars industry would become a negative flow of steel). It can-
not be the flow of commodity i sold by sector j to sector i. For example, if the Cars industry have 
shells of old cars to be resold to Steel industry, this flow will be lower than the flow of steel sold 
by the Steel industry to the Cars industry; the flow will remain non negative, while it is not the 
Cars industry that is in charge of recycling shells but it is, generally, the Service industry. And it 
cannot be the flow of commodity j sold by sector j to sector i, a completely nonsense transmuta-
tion! 

This is why negative matrices have not been considered while negative terms obviously 
could appear in negative matrices. 

15 It must be noted that recently Junius and Oosterhaven (2003) have introduced a special 
version of RAS (Generalized-RAS) that allows handling Z matrices with negative terms: a posi-
tive zij is projected as a positive, a zero is projected as a zero and a negative is projected as a 
negative; the important fact is that no positive can be projected as a negative. In that sense, 
GRAS guarantee the non-switching from positive to negative and vice-versa. See also Ooster-
haven (2005). 
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Theorem 2. The orthogonal projector could generate some negative components on the projected 

matrix AẐ , while it is impossible with the biproportional projector for the projected matrix MẐ . 

Proof. The proof is well known. 

In equations (1) and (2), it is sufficient to have •• < ii zz*  to obtain 0<ip  for any i, or it is 

sufficient to have jj zz •• <*  to obtain 0<jq  for any j.  Hence, P and Q could have negative 

components and A
ijẑ  could be negative for any i or j. 

In equations (4) and (5), iteratively solved, if no ( )t
ip  are negative, all ( )1+t

jq  are not negative, so 

no ( )1+t
ip  are negative.  As the solution is always unique, existing, converging and hyperbolically 

homogenous, one can initialize by any set of ( )0
ip .  It is sufficient to choose ( ) 00 >ip  for all i to 

be sure that all ( )t
ip  and ( )t

jq  are not negative.  Thus, QZPZ =Mˆ  is not negative.  

4.3 Interpreting the Gap between the Projection and the Target4.3.1 Vectors 

When one moves to vectors, two vectors, x the initial vector and *x  the target vector, must be 

compared.  Considering figures 1 and 2, one has to compare the position of the projections B 

(representing Ax̂ ) and C (representing Mx̂ ) of the point A by respect to any point F placed on the 

straight line DE; F represents the target vector *x .  Assume that F is arbitrary, as soon as it is 

placed on the straight line DE.  The quantities *ˆ xx −A  (distance FB) and *ˆ xx −M  (distance FC) 

are the gaps generated by the additive and multiplicative methods respectively (see figure 3). 

Figure 3 about here 

Property 3. The gap generated by the proportional (that is, linear) projector could be equal, lower 

or larger than the gap generated by the orthogonal projector: the quantity ** ˆˆ xxxx −−− AM  

could be positive, zero or negative depending on the value of *x . 
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Proof. 

Consider the trivial case where xx −*  (that is, F is on the line GH supporting A; it is a projection 

on itself).  The points B and C are confused with A so FCFB =  and ** ˆˆ xxxx −=− AM . 

Now, consider the non trivial case where xx ≠*  (that is, F is not on the line GH that supports A). 

| Consider the sub-case where A is on the first bisector: in this case, A, B and C are aligned on 

this bisector and FCFB = , so ** ˆˆ xxxx −=− AM . 

Consider the sub-case where A is not on the first bisector, so 0>BC . 

P If A is to the left of the first bisector, C is to the left of B; there are three cases: 

- F is between E and B. The distance FC is always larger than the distance FB because 
→→→

+= BCFBFC  and FBFC > .  

- F is between B and C. The value of FB and FC depends on the exact position of F, all is 

possible: FBFC > , FBFC =  and FBFC < . 

- F is between C and D. 
→→→

+= CBFCFB , so FBFC < . 

If A is to the right of the first bisector, C is to the right of B. There are again the same three cases, 

reversed. 

- F is between D and B; the distance FC is always larger than the distance FB because 
→→→

+= BCFBFC  and FBFC > .  

- F is between B and C. The value of FB and FC depends on the exact position of F, all is 

possible. 

- F is between C and E; 
→→→

+= CBFCFB , so FBFC < . x 

Two interpretations of the gap between the projection and the target can be produced: 

| Either the gap reflects the quality of the projection and this gap, considered as a bias, must be 

minimized.  From Property 3, the interpretation of the gap as a bias that must be as small as 

possible in order to maintain the quality of the projection ("accuracy" of the method) cannot be 
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accepted, because the comparison of both methods on the basis of true data depends entirely on 

the nature of these data, x and *x , hence, the comparison can be favorable to one or to the other. 

| Or the gap measures the structural effect between the initial situation and the final situation. 

When the projector is linear, this second interpretation in terms of structural change corresponds, 

more or less, in the world of vectors, to the familiar shift-share method: *ˆ xx −  measures the 

structural effect, while the size effect is removed by calculating x̂  (Armstrong and Taylor, pp. 

145-7). 

4.3.2 Matrices 

The gap between the projected matrix ( )*ˆ ZZ,Z K=  and the target matrix *Z  is ( ) ** ZZZ, −K . 

Note that how the gap is measured is not essential in the following discussion ( , see Knudsen 

and Fotheringham (1986) for a discussion of the choice of the "statistics" affects the measure of 

the gap; they list three categories of "statistics") 

| information-based "statistics" (as Kullback and Liebler's information gain function 

∑∑
= =

=
n

i

m

j ij

M
ijM

ij z
z

z
1 1

ˆ
logˆφ , or as ∑∑

= =
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+
+

+
=

n

i

m

j
M
ijij

ij
ijM

ijij

M
ijM

ij zz
z

z
zz

z
z

1 1

2
ˆ

log

2
ˆ

ˆ
logˆψ ), 

general distance "statistics" (as standardized root mean error) 

and the traditional statistics (as 2R  or 2χ ). 

One must not confuse between these "statistics" that calculate the distance between two matrices 

(in the context of this article, it is ( )*ZZ,K  and *Z ), and the way that ( )*ZZ,K  is generated; 

critically, this distinction is important for the criterion of information gain. 

For matrices, the gap could receive two interpretations. 

Interpreting the Gap as a Bias 

The projection method is declared as inaccurate if the bias is large; the authors supporting this 

point of view tend to prefer a projection method that minimizes the bias. 
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Theorem 3. Both families of methods could provide the smallest bias: it is sufficient to choose 

the adequate target matrix *Z . 

Proof. For AK  as well as for MK , the projected matrix ( )*ˆ ZZ,Z K=  depends only on the 

margins sZ*  and *' Zs  of *Z , not on the interior values *
ijz  of *Z  itself (if the margins are 

determined by the interior values, the contrary is false).  With the margins being given, any 

method could provide a small bias; it is sufficient to choose the interior of *Z , that is, the 

adequate set of *
ijz , the margins sZ*  and *' Zs  being given. 

Among these matrices *Z , there is always one that provides the smallest bias. 

| When the projector is MK  (equations 3 and 4), it is ( )*ˆ ZZ,Z MM K=  itself because 

( ) MMMK ZZZ, ˆˆ = ; so, if the set of data is ( )MZZ, ˆ , the bias is zero: ( ) 0ˆˆ =− MMM K ZZ,Z . 

| When the projector is AK  (equations 1 and 2), it is ( )*ˆ ZZ,Z AA K=  itself because 

( ) AAAK ZZZ, ˆˆ = , hence, if the set of data is ( )AZZ, ˆ , the bias is zero: ( ) 0ˆˆ =− AAA K ZZ,Z . 

Consequently, if by chance *Z  is equal to (or is close to) MẐ , one will find that biproportion is 

the best method, while if *Z  is equal to (or is close to) AẐ  one will find that the minimization of 

distance is the best method. 

For example, measuring the performances of two methods by using the mn×  table of year 1980 

as initial matrix and the mn×  table of year 2003 as target matrix is not theoretically correct 

because an infinity of tables could have the same margins as the table of 2003.  One method 

could be the best with one table but the worse with another table, the margins being given, so the 

results are entirely dependent of what nature of the economy is in 2003. Epistemologically, these 

results are not universal but contingent on the empirical data.  The choice of another year could 

reverse the results.  One might consider all tables from 1981 until 2003; if all the results or the 

majority of the results are in favor of one of the methods, this one could be promoted as the best.  

However, even if this approach could seem to be empirically acceptable (except that the tables in 

this series of tables will not have the same margins), it is not theoretically correct.  The series of 

tables 1981, 1982, ..., 2003, etc., is not the whole set of possible matrices and it would be 

necessary to consider the infinite set of all possible matrices of dimensions mn×  and the results 

could be different with one or more of the matrices (realistic or not) of this set. 
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 It must be said that this finding is not generally appreciated. In most works, a set of data is used 

to validate or invalidate a method or the other, forgetting that the results are strictly contingent to 

the data, that is, absolutely not general.16  As any change in the initial matrix (or in the margins) 

obviously implies a different result, 17 this result seems obvious for RAS.  However, the demon-

stration in this present paper goes far from this: for any method, comparing the results of the 

projection ( )*ˆ ZZ,Z K=  to *Z  is contingent to the data inside *Z . 

Interpreting the Gap as the Structural Change  

Interpreting the gap as the structural change between Z and *Z  was suggested initially by de 

Mesnard (1988, 1997, 2004):18 ( )*ˆ ZZ,Z MM K=  and *Z  are comparable as they have the same 

margins *
•iz  for all i and *

jz•  for all j. Computing ( )*ˆ ZZ,Z MM K=  allows to remove the effect of 

variation of the size (i.e., of differential growth) of the agents i and j (which could be sectors, 

regions, individuals, etc.) between Z and *Z .  As in the shift-share method, it remains the 

structural effect measured by the norm *ˆ ZZ −M , which can be globally computed, or computed 

                                                           
16 Some authors, mainly Miernyk (1977), have adopted this point of view, not to compare 

additive and multiplicative methods but to criticize RAS: they introduce some new information 
(one or more elements, exogenously given) and they discover that the bias is sometimes in-
creased. Some other authors as Hewings and Janson (1977), Miller and Blair (1985), Israilevich 
(1986), Szyrmer (1987) and Lahr (2001) find similar results. However, de Mesnard and Miller 
(2006) have recomputed Myernik's calculations and some of its followers to find rather different 
results: adding extra information improves the results more often than previously found. Any-
way, theorem 3 again applies, as suggested in the conclusion of de Mesnard and Miller (2006): 
extra information is able to improve or not the results of RAS: it is sufficient to choose skillfully 
the target matrix. 

17 Bacharach (1970) has demonstrated that ( ) QZPZZ,Z == *ˆ MM K , (P and Q diagonal 
matrices), is unique when it is found by RAS, only given the initial matrix and the future margins 

sZ*  and *' Zs  of *Z .  More generally, de Mesnard (1994) has demonstrated that the same prob-
lem has a unique solution whatever the algorithm chosen even unknown (and not only for RAS 
or for the minimization of information (3)-(5) or for the maximization of entropy or for any 
other); in other words, all algorithms are equivalent from the moment that they allow to find 

( ) QZPZZ,Z == *ˆ MM K : this is the property of “unicity”. 
18 See also Van der Linden and Dietzenbacher (1995, 2000), Dietzenbacher and Hoekstra 

(2003); Dietzenbacher and Hoekstra call the gap the "cell-specific change". 
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column vector by column vector, or computed row vector by row vector.19  Considering 

( ) ***ˆ ZZZ,ZZ −=− MM K , one should note that if the value of ( )*ˆ ZZ,Z MM K=  does not 

depend on the interior values *
ijz  of *Z  (but only on the interior values ijz  of Z and on the 

margins of *Z ), the structural change between Z and *Z  depends on these interior values of *Z ! 

The same thing could be suggested with AK , but negative terms could appear in the structural 

change: again, how to interpret a negative structural change? 

5 Conclusion 

To help deciding which matrix-adjustment method is the best, the article returned to the simpler 

problem of vector adjustment before addressing matrices.  It has been shown that the 

information-lost minimization (biproportional methods and RAS) leads to a multiplicative form 

and generalizes the linear model.  On the other hand, the distance minimization that leads to an 

additive form tends to distort the data by giving a result that is asymptotically independent (all 

its components being equal) to the initial matrix.  The result suggest unambiguously that 

biproportional methods and RAS are the best for matrix adjustment as they generalize the linear 

model and are asymptotically the most respectful of the initial matrix while the do not generate 

surprising negative terms.  The demonstration in this paper is theoretical while most authors 

have tried to provide an empirical demonstration by measuring the gap between the projected 

matrix and the target matrix but the empirical demonstration is strictly contingent on the data and 

absolutely not general.  Hence measuring the gap between the projection and the target cannot 

help deciding which method is the best because the gap depends on the chosen target matrix.  On 

the contrary, the same gap could be interpreted in terms of structural effect generalizing the shift-

share method.  

                                                           
19 Theil and Ghosh (1980) have also made a parallel between shift-share and RAS. How-

ever, it is by using a completely different definition of shift-share and of its generalization to ma-
trices, what amounts to say that the shift-share equation (in matrices) is ( )*ˆ ZZ,Z MM K=  itself. 
Another story. 
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1 Annexes 

1.1 Annex 1: Derivation of the solutions of both methods of matrix adjustment 

1.1.1 Solution of distance minimization 

 For vectors, the Lagrangian writes as: 

( ) ⎟
⎠

⎞
⎜
⎝

⎛ −+−= ∑∑
=

•
=

n

i

A
i

n

i
i

A
i xxxxL

1

*

1

2 ˆˆ λ  

The first derivatives are all zero at optimum: 

i
xd

dL
A
i

 allfor  0
ˆ

=  ( ) ⇔=−−⇔ ixx i
A
i  allfor  0ˆ2 λ  

(11) ixx i
A
i  allfor  

2
ˆ λ+=   

∑
=

• =⇔=
n

i

A
ixx

d
dL

1

* ˆ0
λ

 

So, by replacing A
ix̂  from (11) into this equation: ( )•••• −=⇔+= xx

n
nxx ** 2
2

λλ ; then by 

carrying λ  into (11): ixbx i
A
i  allfor  ˆ += . 

 For matrices, the Lagrangian writes as: 

( ) ⎟
⎠

⎞
⎜
⎝

⎛ −+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+−= ∑∑∑∑

=
•

=
•

= =

n

i

A
ijjj

m

j

A
ijii

n

i

m

j
ij

A
ij zzzzzzL

1

*

1

*

1 1

2 ˆˆˆ μλ  

The derivatives equalized to zero at optimum give: 

( ) 0ˆ20
ˆ

=−−−⇔= jiij
A
ijA

ij

zz
zd

dL μλ   

(12)  ( ) jizz jiij
A
ij , allfor  0

2
1ˆ =++= μλ  

Then, 

izz
d
dL m

j

A
iji

i

 allfor  ˆ0
1

* ∑
=

• =⇔=
λ

 

By inserting the value of A
ijẑ  from (13) in this equation, it follows: 
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( ) ( )
m
zzzz ii

m

j
ijiii

•••

=
••

−−=⇔++= ∑ μλμλ
*

1

* 2
2
1  and ( ) •••••• −−= μλ nzzm *2 . 

And, 

jzz
d
dL n

i

A
ijj

j

 allfor  ˆ0
1

* ∑
=

• =⇔=
μ

 

and again by inserting (13): 

( ) ( )
n
zz

zz jj
n

i
jjijj

•••

=
••

−−
=⇔++= ∑

λ
μμλ

*

1

* 2
2
1  and ( ) •••••• −−= λμ mzzn *2 . 

So, •λ  and •μ  are arbitrary but linked by ( )•••••• −=+ zznm *2μλ . One can take •• = μλ , 

what gives: 
nm
zz

+
−== ••••

••

*

2μλ ; hence: 

( ) ( ) ( )
( )nmm

zzzznm ii
i +

−−−+
= ••••••

**

2λ  and 
( ) ( ) ( )

( )nmm
zzzznm jj

j +
−−−+

= ••••••
**

2μ  

which reported in (13) gives: 
mn
zz

n
zz

z
m

zzz jj
ij

iiA
ij

•••••••• −−
−

++−=
***

ˆ . 

1.1.1 Solution of minimization of information lost 

 For vectors, the Lagrangian writes as: 

⎟
⎠

⎞
⎜
⎝

⎛ −+= ∑∑
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•
=

n

i

M
i

n

ii i

M
iM
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ˆˆ
logˆ λ  

The first derivatives are all zero at optimum: 

⇔=−+⇔= i
x
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xd
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i

M
i

M
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 allfor  01
ˆ

log allfor  0
ˆ

λ  

(13) i
M
i xex 1ˆ −= λ  for all i 

∑
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ixx
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So, by replacing M
ix̂  from (11) in this expression: 1log

*
1* +=⇔=

•

•
•

−
• x

xxex λλ ; then by 

carrying this value into (11): i
M
i xax =ˆ  for all i. 

 For matrices, the Lagrangian writes as: 
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Then by reporting both it into (15): 
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By denoting ( )iip λ−= exp  and ( )jjq μ−−= 1exp , one obtains jiji
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ij qzpz =ˆ  for all i, j 
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 Actually, if 0=ijz , the function (14) is not defined: +∞=
→ xx

1loglim
0

. 20 Unfortunately, this 

case often occurs: a matrix Z in the real world (as an input-output table) does contain many zeros 

                                                           
20 Many thanks to Christian Michelot for this remark. 
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and it is not realistic to impose Z to be strictly positive. It is computationally annoying. This is 

why Geoffrey Hewings has attempted to solve the problem in its Ph.D. dissertation (1969) by 

replacing the zeros by very small values, arguing that these zeros are often caused by the 

rounding of small values. It is a great idea for real interindustrial and interregional tables because 

these tables are practically indecomposable into two (or more) independent blocks: replacing a 

zero by a small value does not change much the picture even it is a true zero that is replaced by a 

small value. For other types of tables, it could not work, for example for international tables 

where two blocks of countries are in autarky each other, or for social tables where two groups of 

individual do not exchange messages. In these exceptional cases, the matrix can be decomposed 

into two blocks 11A  and 22A  (there are no exchanges between the two blocks), and one has two 

dominant eigenvalues that determine two different growth rates for each block: 

Z = 

0

0

A11

A22

 
So if a zero not placed in a block is replaced by a small term as in: 

Z = 

0

A11

A22

0

0

0

0
ε

 
the system will have only one dominant eigenvalue and only one growth rate, instead of 

two: this completely changes the picture even if the equalization of the growth rates into a new 

unique one could take much time (i.e., many iterations). Hewings procedure could allow finding 

a solution to the adjustment problem even when this solution would not exist normally: while a 

zero is projected as a zero, a small value can be projected a large value. 
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 However, on a theoretical point of view, there is no difficulty if 0=ijz  for some i and j. 

Equation (14) can be defined for 0≠ijz , for all i, j, what allows to derive equation (15). Then, 

one is able to calculate the limit value of M
ijẑ  when 0→ijz  for any i, j: 0ˆ →M

ijz  when 0→ijz  

for any i, j. Remark that this difficulty is specific to the minimization of information lost and 

does not occur when the model is derived from entropy maximization. 

1.1 Annex 2: examples 

 It could be strange to think about the foundations of the linear model, as this one is so 

much familiar to everyone and seems to be known by every scholar. The applications are 

obvious and very common, for example: 

| Given a consumption function, what is the consumption of each commodity if the consumer's 

revenue increases, the utility consumer's function being unknown? 

| Given a production function with non substitutable factors (fixed coefficients following 

Leontief), what is the vector of inputs that correspond to a larger production, the production 

function being unknown? 

1.1.1 Consumption function 

 The present vector of consumption of an agent is (units are in value): 

( )200251006510'=x . The wealth is 400=w . 

 Now, the agent's wealth becomes 600=w . Following the linear model, i.e., the 

information-lost-minimization principle, the new consumption vector turns out to be 

( )3005.371505.9715'ˆ =Mx  with 5.1
400
600 ==a . Following the distance-minimization 

principle the consumption vector becomes ( )2406514010550'ˆ =Ax with 40
5

400600 =−=b . 

The Euclidean distance between Ax̂  and x is 89.44 while the Euclidean distance between Mx̂  

and x is higher, at 117.21. When w tends toward infinite, Ax̂  tends to have all its components 

equal to 
5
w , what is economically nonsense, while the proportions inside Mx̂  remain fixed. 
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 If the agent's wealth goes to 200=w , some negative terms will appear with distance 

minimization: 40
5

400200 −=−=b , ( )16015602530'ˆ −−=Ax and the agent has a negative 

consumption of commodities 1 and 4. With the information-lost-minimization principle, 

5.0
400
200 ==a  and ( )1005.12505.325'ˆ =Mx  is not negative. Nevertheless Ax̂  that is the 

closest to x. The distances are unchanged (they depend only on b  and a, here unchanged by 

comparison to the case 600=w ): between Ax̂  and x it is again 89.44 and between Mx̂  and x it is 

117.21. 

1.1.1 Production function 

 The vector of inputs of a sector is ( )703060402080'=x  with an output of 400 (the value 

added is equal to 100). 

 Now, the new output is 700 with a value added of 175 (assuming the ratio added value / 

output to be stable and equal to 0.25). With multiplicative methods, the technical coefficients 

remain stable in accordance with Leontief: ( )175.075.15.1.05.2.'=Mθ  and the new vector 

of intermediary consumption becomes ( )5.1225.521057035140'ˆ =Mx  with 

400
70075.1

300
525

100400
175700 ===

−
−=a . The Euclidean distance between Mx̂  and x is 100.06. 

However, following the criteria of distance minimization the new output vector becomes 

( )5.1075.675.975.775.575.117'ˆ =Ax  with 5.37
6

300525 =−=b . The Euclidean distance 

between Ax̂  and x is lower at 91.86. The new technical coefficients are 

( )154.096.139.111.082.168.'=Aθ . 

 As it can be seen, the technical coefficients cannot be stable with the distance principle: at 

infinite, they tend to be all equal to 125.
6
75. = , that is, ( )125.125.125.125.125.125.'→Aθ , 

those above 0.125 being decreasing up to this value, those under 125.  increasing up to it, what is 

economically non sense. However, the technical coefficients Mθ  remain fixed with the linear 

model. 
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 If the output goes down to 200, the value-added becomes equal to 50; 5.=a  and 

( )351530201040'ˆ =Mx  but 25
6

300150 −=−=b  and ( )4553515555'ˆ −−=Ax : the 

intermediate consumption of input 2 becomes negative even if vector Ax̂  is closer to x than 

vector Mx̂ : ( ) 71.66,ˆ =xxMd  and ( ) 24.61,ˆ =xxAd . 
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Figure 1. Orthogonal projection in two dimensions 

(circle: A, initial point; squares: B and B', projected points) 
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Figure 2. Linear projection in two dimensions 

(circle: A, initial point; squares: C and C', projected points) 
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Figure 3. Orthogonal and linear projections in two dimensions 
(circles: initial point A and target point F; 

squares: orthogonally projected point B and linearly projected point C
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