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Abstract: 
This paper estimates the evolution of labor productivity disparities among 48 Spanish regions 
over 1980-1996 according to the concepts of β- and σ-convergence and emphasizes the 
importance of including both spatial effects and a disaggregate analysis at a sectoral level.  
Various recent contributions have tested the origin of productivity differentials among regions 
in Europe (Esteban, 2000; Maudos et al., 2000; Cuadrado-Roura et al., 1999, among others).  
However, despite the literature focusing on the essential role of spatial dependence, the 
impact of neighboring locations’ productivity has not been widely investigated.  The results 
display that spatial effects vary from one sector to another and β- convergence in labor 
productivity is greater at the aggregate level than at the level of agriculture and industry, but 
not of services.  When σ -convergence is examined in order to measure the narrowing of 
inequalities, it reveals that convergence occurs in aggregate labor productivity but not in 
productivities by sector.  The reason comes from a transfer of resources from agriculture 
towards more productive sectors that has been more pronounced in the poor regions than in 
the rich ones. 
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Productivity Convergence and Spatial Dependence Among 
Spanish Regions 

 
 
 
 
 

Section 1- Introduction 

 

Since 1986, when Spain decided to become a member of the European Community, this 

country has seen its per capita Gross Domestic Product converging to the European average, 

but disparities in per capita incomes among autonomous communities have strongly increased 

within the country (Neven and Gouyette, 1995; Quah, 1996; Martin, 1998; Dall’erba and 

Hewings, 2003).  While the convergence hypothesis has received considerable attention in the 

recent literature, convergence is often measured on the Gross Regional Product and according 

to its most famous concepts, the β- and the σ-convergence (Barro and Sala-I-Martin, 1991, 

1992).  In spite of the large amount of work in this area, a disaggregated analysis at the 

sectoral level of the convergence hypothesis has not been commonly used.  It may alter the 

conclusions usually drawn in the literature about the evidence of convergence and about the 

identification of the forces driving to it (Cuadrado-Roura et al., 1999; Lopez-Bazo et al., 

1999; Cuadrado-Roura, 2001).  Moreover, the majority of empirical tests of regional income 

convergence are based on the same assumptions as the ones underlying for international 

income convergence: regions are considered as isolated entities, as if their geographical 

location and potential interregional linkages did not matter.  Only recently, the role of spatial 

effects has been considered in empirical works using the formal tools of spatial statistics and 

econometrics.  For the European regions, papers in this area include, among others, Fingleton 
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(1999, 2001, 2003a and b), Bivand and Brunstad (2003) or Le Gallo et al. (2003), Dall’erba 

and Le Gallo (2003).   

This paper proposes to remedy this gap by supplying an empirical analysis of labor 

productivity disparities among 48 Spanish regions over 1980-1996 according to the concepts 

of β- and σ-convergence including both spatial effects and a disaggregate analysis at a 

sectoral level.  We use spatial units that are smaller than the autonomous communities usually 

used to test for convergence within Spain. Therefore, our results may differ from other 

studies.  This paper is organized as follows: section 2 provides some insights into the β -

convergence model and spatial effects upon which the empirical estimations described in the 

following sections relies.  Section 3 presents the data and the weight matrices.  In section 4, 

spatial effects are included in the estimation of the appropriate β-convergence model of per 

capita GDP, aggregate labor productivity and labor productivity in three sectors (agriculture, 

industry and services).  Since β -convergence does not necessarily imply a narrowing of 

regional inequalities (Quah, 1993), section 5 proposes to estimate σ -convergence for the 

same variables.  An index of inequality in productive structure is also introduced in order to 

measure the extent to which employment structure has become more homogeneous across 

regions.   

 

Section 2- β-convergence Models and Spatial Effects  

 

Since the publication of the well-known works of Barro and Sala-i-Martin (1991, 

1995), numerous studies have examined β−convergence between different countries and 

regions1.  This concept is linked to the neoclassical growth model, which predicts that the 

growth rate of a region is positively related to the distance that separates it from its steady-

                                                 
1 See Durlauf and Quah (1999) for a review of this extensive literature. 
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state.  Empirical evidence for β−convergence has usually been investigated by regressing 

growth rates of GDP on initial levels.  Two cases are usually considered in the literature: first, 

the hypothesis of absolute β−convergence relies on the idea that if all economies are 

structurally identical and have access to the same technology, they are characterized by the 

same steady state, and differ only by their initial conditions.  Second, the concept of 

conditional β−convergence is used when the assumption of similar steady-states is relaxed.  

Note that if economies have very different steady states, this concept is compatible with a 

persistent high degree of inequality among economies.  

Both β−convergence concepts have been heavily criticized on theoretical and 

methodological grounds.  For example, Friedman (1992) and Quah (1993) show that 

β−convergence tests may be plagued by Galton's fallacy of regression toward the mean.  

Furthermore, they face several methodological problems such as heterogeneity, endogeneity, 

and measurement problems (Durlauf and Quah, 1999; Temple, 1999).  In this paper, we want 

to point out the fact that very few empirical studies do take into account the spatial dimension 

of data.  The different spatial effects that will be included in our analysis are spatial 

heterogeneity and spatial autocorrelation. 

 

Spatial heterogeneity means that economic behaviors are not stable over space.  In a 

regression model, spatial heterogeneity can be reflected by varying coefficients, i.e. structural 

instability, or by varying error variances across observations, i.e. groupwise 

heteroskedasticity.  These variations follow for example specific geographical patterns such 

as East and West, or North and South.  

Spatial heterogeneity can be linked to the concept of convergence clubs, characterized 

by the possibility of multiple, locally stable, steady state equilibria (Durlauf and Johnson, 

1995).  A convergence club is a group of economies whose initial conditions are near enough 
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to converge toward the same long-term equilibrium.  When convergence clubs exist, one 

convergence equation should be estimated per club.  To determine those clubs, some authors 

select a priori criteria, like the belonging to a geographic zone (Baumol, 1986) or some GDP 

per capita cut-offs (Durlauf and Johnson, 1995).  Others prefer to use endogenous methods, as 

for example, polynomial functions (Chatterji, 1992) or regression trees (Durlauf and Johnson, 

1995).  In our context, we choose to detect convergence clubs using exploratory spatial data 

analysis which relies on geographic criteria (Baumont et al., 2003).   

 

The second spatial effect we will include in our analysis is spatial autocorrelation.  It 

refers to the coincidence of attribute similarity and locational similarity (Anselin, 1988).  In 

our case, spatial autocorrelation means that rich regions tend to be geographically clustered as 

well as poor regions.  Spatial concentration of economic activities in European regions has 

already been highlighted by Lopez-Bazo et al. (1999), Le Gallo and Ertur (2003) and 

Dall’erba (2003) using the formal tools of spatial analysis.  Some studies have also taken into 

account spatial interdependence between regions in the estimation of the appropriate 

β−convergence model (see, among others, Armstrong, 1995; Moreno and Trehan, 1997, 

Fingleton, 1999 and 2001; Rey and Montouri, 1999; Baumont et al., 2003; Le Gallo et al., 

2003).  This is also the purpose of this paper, but on the opposite of the previous studies, we 

consider disaggregate β−convergence at a sectoral level.   

 

Integrating spatial autocorrelation into β−convergence models is useful for three 

reasons.  First, from an econometric point of view, the underlying hypothesis in OLS 

estimations is based on the independence of the error, which may be very restrictive and 

should be tested since, if it is rejected, the statistical inference based on it is not reliable.  

Second, it allows capturing geographic spillover effects between regions using different 



 6

spatial econometric models: the spatial lag model, the spatial error model or the spatial cross-

regressive model (Rey and Montouri, 1999; Le Gallo et al., 2003).  Third, spatial 

autocorrelation allows accounting for variations in the dependent variable arising from latent 

or unobservable variables.  Indeed, in the case of β−convergence models, the appropriate 

choice of these explanatory variables may be problematic because it is not possible to be sure 

conceptually that all the variables differentiating steady states are included2.  Furthermore, 

data on some of these explanatory variables may not be easily accessible and/or reliable.  

Spatial autocorrelation may therefore act as a proxy to all these omitted variables and catch 

their effects.   

 

At the regional scale, spatial effects and particularly spatial autocorrelation cannot be 

neglected in the analysis of convergence processes: several factors, such as trade and 

commuting between regions, technology and knowledge diffusion, and more generally 

regional spillovers, may lead to spatially interdependent regions.  Neglecting these effects 

would mean treating regions as if they were "isolated islands" (Mankiw, 1995; Quah, 1996).  

Before going further in the spatial econometric estimation of regional sectoral convergence in 

Spain, section 3 will introduce data and the spatial weight matrix since all the following 

analysis relies on the definition of space through the weight matrix.  

 

Section 3- Data and Spatial Weight Matrices 

 
The data on per capita GDP and regional productivity per worker come from the most 

recent version of the NewCronos Regio database by Eurostat.  This is the official database 

                                                 
2 More than 90 of such variables have been included in cross-country regressions using international datasets 

(Durlauf and Quah, 1999). 
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used by the European Commission for its evaluation of regional convergence.  GDP per capita 

is measured in PPP (Purchasing Power Parity) in order to take into account the regional ability 

to purchase goods and thus achieve different levels of well-being, whereas productivity (in 

terms of GVA, Gross Value Added, per worker) is measured in ECU in order to consider 

differences in the capacity to produce goods.  We first use the aggregate productivity per 

worker (in log) and then we disaggregate it into three sectors (agriculture, industry and 

services) for each region over the 1980-1996 period.  The database does not provide more 

recent data at the NUTS III level.  Our sample is composed of 48 Spanish regions at NUTS III 

level3 which are represented in figure 1 below.  Table 1 displays the code and the name of 

these regions.  This is the finest disaggregation possible in our case because no data exist for 

smaller regions over the country.  We exclude the regions of Canary Islands and Ceuta y 

Mellila due to their remoteness.  Most of the studies on regional convergence within Spain 

work on the sample of NUTS II regions (see, among others, Cuadrado-Roura et al., 1999; 

Maudos et al., 2000; De la Fuente, 2002; Donaghy and Dall’erba, 2003).  Therefore, due to 

the modifiable areal unit problem (MAUP) explained below, our results may differ from 

theirs. 

 

<<insert figure 1 and table 1 here>> 

 

We are aware that our empirical results could be affected by the choice of the spatial 

aggregation which influences the magnitude of various measures of association.  In the 

literature, this problem is referred to as MAUP well known to geographers (see Openshaw 

and Taylor, 1979), also called problem of ecological fallacy (Anselin and Cho, 2000).  

                                                 
3 NUTS: Nomenclature of Territorial Units for Statistics. The Commission uses as regional statistical concept the 
spatial classification established by Eurostat on the basis of national administrative units. Europe can therefore 
be shared either in 77 NUTS I level regions, or 211 NUTS II, 1031 NUTS III, 1074 NUTS IV or 98433 NUTS V 
regions. 
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Messner and Anselin (2001) add that scale is important as well.  If the scale and spatial extent 

of units of observations for the data do not match up the scale and spatial extent of the studied 

process, then it may result in a statistical problem wherein spatially correlated and/or 

heteroskedastic error structures occur (Casellas and Galley, 1999).  For instance, the area of 

Badajoz (in the South-West) is 11 times greater than the one of Guipúzcoa (in the North), but 

both are official NUTS III regions.  Moreover, variables such as productivity per worker or 

per capita income in open formal NUTS II or III regions may reflect characteristics of 

neighboring regions.  Boldrin and Canova (2001) show the problem linked to measuring a 

variable on a territorial unit artificially defined in which people are free to move.  They give 

the example of the city of Hamburg which is a NUTS II level region with high per capita 

income, but half the population of the whole Hamburg metropolitan area lives in the nearby 

NUTS II level regions of Schleswig-Holstein and Lower Saxony, commuting to Hamburg for 

work.  As a result, the value added in Hamburg is overstated by 20% relative to its effective 

population, while those of Schleswig-Holstein (value added equals 102% of EU average) and 

Lower Saxony (104%) are understated.  This is similar for Ile de France (160%) and Bassin 

Parisien (92.7%), Communidad de Madrid (101%) and its two neighboring Castillas, Castilla-

y-Leon and Castilla-La-Mancha (resp. 66 and 76%).   

 

We now present the spatial weight matrices, upon which the determination of spatial 

effects relies.  Two different types of matrices will be considered here.  The first type relies on 

travel time by road from the most populated town of a region to the one of another region4.  

These data come from the web site of Michelin5.  We adopt the travel time instead of the 

distance by road because the existence of islands (Balearic Islands) forces us to include the 

time spent to load and unload trucks on boats.  This information would not have appeared if 

                                                 
4 Information on the most populated town come from www.citypopulation.de/Europe.html 
5   www.viamichelin.com 
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we would have considered the distance by road only.  The second type of matrices is based on 

pure geographical distances.  The two different types of matrices we choose reflect different 

points of view with, on the one hand, the one of economists, such as Bodson and Peeters 

(1975), Aten (1996, 1997) or Los and Timmer (2002), who find more attractive to base these 

weights on the channels of communication between regions, such as roads and railways; and 

on the other hand the point of view of statisticians, such as Anselin and Bera (1998) or 

Anselin (1996), who choose to base them on pure geographical distance, as exogeneity of 

geographical distance is unambiguous.   

With regard to weight matrices based on pure geographical distance, the existence of the 

Balearic Islands does not allow considering simple contiguity matrices; otherwise the weight 

matrix would include rows and columns with only zeros for these islands.  Since unconnected 

observations are eliminated from the results of the global statistics, this would change the 

sample size and the interpretation of the statistical inference.  More precisely, we use the 

travel time by road (resp. great circle distance) between most populated towns (resp. regional 

centroids).  The matrices we use are based on the number of k nearest neighbors, with 

k=2,3,4,5 neighbors.  Each matrix is row standardized so that it is relative and not absolute 

distance which matters.  Finally, the robustness of the results is tested by using other weight 

matrices based on the great circle distribution of travel time (resp. geographical distance).  

 

Section 4- β -convergence Estimations 

 
4-1 Detection of spatial regimes 
 

Using the spatial weight matrices previously described, the first step of our analysis is 

to detect the existence of spatial heterogeneity in the distribution of the first variable, the 

regional per capita GDP.  In that purpose, we use the G-I* statistics developed by Ord and 
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Getis (1995)6 on the per capita GDP in 19807.  Because of the great increase in regional 

disparities within Spain, which makes the composition of spatial regimes inconsistent over 

time, we choose to base the regime definition according to the value of regional per capita 

GDPs at the initial period.  These statistics are computed for each region and they allow 

detecting the presence of local spatial autocorrelation: a positive value of this statistic for 

region i indicates a spatial cluster of high values, whereas a negative value indicates a spatial 

clustering of low values around region i.  Based on these statistics, we determine our spatial 

regimes, which can be interpreted as spatial convergence clubs, using the following rule: if 

the statistic for region i is positive, then this region belongs to the group of “rich” regions and 

if the statistic for region i is negative, then this region belongs to the group of “poor” regions. 

 

For all weight matrices described above, we detect two spatial regimes at the initial 

period, which highlights some form of spatial heterogeneity:  

- 23 regions belong to the spatial regime “North-East” where the G-I* statistics is positive: 

Asturias, Cantabria, Alava, Guipuzcoa, Viscaya, Navarra, La Rioja, Huesca, Teruel, 

Zaragoza, Burgos, Leon, Soria, Albacete, Barcelona, Gerona, Lerida, Tarragona, Alicante, 

Castellon de la Plana, Valencia, Baleares, Murcia.  

 

- 25 regions belong to the spatial regime “South-West” where the G-I* statistics is negative: 

La Coruna, Lugo, Orense, Pontevedra, Madrid, Avila, Palencia, Salamanca, Segovia, 

Valladolid, Zamora, Ciudad Real, Cuenca, Guadalajara, Toledo, Badajoz, Caceres, Almeria, 

Cadiz, Cordoba, Granada, Huelva, Jaen, Malaga, Sevilla. 

                                                 
6   All computations in this section are carried out using the SpaceStat 1.91 software (Anselin, 1999). 

7   We do not use the Moran’s scatterplot because it would imply dropping out 10 “atypical” regions from our 

sample. 



 11

4-2 Estimation results 

 
β−convergence model of per capita GDP 

In the case of the per capita GDP β-convergence model, the weight matrix based on 

travel time that maximizes the value of Moran’s I test statistics adapted to regression residuals 

is k=58 (Cliff and Ord, 1981).  This matrix allows connecting a region with the five most 

accessible regions by road.  In order to complete the comparison between weight matrices, we 

also display the results with a weight matrix based on the five nearest neighbors.  In this later 

case, the distance is based on pure geographical distance.  The difference between both 

weight matrices is narrow, but increases with the number of neighbors.  The greater is the 

number of neighbors, the greater is the chance that a highway exists from the origin region to 

the n th  region.  The extent of accessibility by road does not necessarily correspond to the 

geographical proximity.   

 

Starting with the OLS estimation of the absolute β -convergence model, estimation 

results displayed in column 1 of table 2 show that β̂  has the expected sign  (-0.004) but is not 

significant (p-value = 0.265).  Looking at the diagnostic tests, the Jarque-Bera test does not 

reject the assumption of normality of the residuals (p-value = 0.805).  We note also that the 

White test clearly does not reject homoskedasticity (p-value = 0.703) as well as the Breusch-

Pagan test versus the per capita GDP at the initial period (p-value= 0.857). 

 

<<Insert table 2 here>> 

 

                                                 
8   Complete results are available upon request from the author. 
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Various tests aiming at detecting the presence of spatial effects in the estimation of the 

appropriate β -convergence model have been described in Anselin (1988) and Anselin et al. 

(1996) and are applied here.  Therefore, we shortly describe the various steps we followed to 

find the most appropriate model specification for each of our variables.  In all cases, we start 

with the OLS estimation of the absolute β -convergence model.  In order to identify the form 

of the spatial dependence (spatial error model or spatial lag), the Lagrange Multiplier tests 

(resp. LMERR and LMLAG) and their robust version are performed.  The decision rule 

suggested by Anselin and Florax (1995) is then used to decide the most appropriate 

specification as follows: if LMLAG (resp. LMERR) is more significant than LMERR (resp. 

LMLAG) and R-LMLAG (resp. R-LMERR) is significant whereas R-LMERR (resp. R-

LMLAG) is not, then the most appropriate model is the spatial autoregressive model (resp. the 

spatial error model).  Following this decision rule, the LMERR is more significant than the 

LMLAG, but both R-LMERR and R-LMLAG are significant.  Since the R-LMERR is more 

significant, we adopt the spatial error model as the best specification (table 2, column 1).   

 
The spatial error model can be written as follows: 

 

0Tg S yα β ε= + +  with W uε λ ε= +       and 2(0, )uu N Iσ∼                                (1) 

 

where gT is the (n×1) vector of average growth rates of per capita GDP between date 0 

and T; S is the (n×1) sum vector; y0 is the vector of log per capita GDP levels at date 0.  λ  is a 

coefficient indicating the extent of spatial correlation between the residuals.  The estimation 

results by ML and Generalized Method of Moments (GMM, iterated) estimation are displayed 

in column 2 of table 1. A positive and significant spatial autocorrelation of the errors is found 

( λ̂ =0.527 by ML-estimation).  The level of convergence ( β̂ =-0.010) has increased compared 
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to the OLS-estimation and now is significant.  The convergence speed is 1.09% and the half-

life is 68.78 years9.  The LIK, AIC and SC measures indicate that this model specification 

achieves a better likelihood than the OLS-specification.  As displayed in column 2, the 

estimates are followed by a number of specification diagnostics to test the assumption on 

which the maximum likelihood estimation in the spatial error model is based.  The two tests 

against heteroskedasticity (the unadjusted and spatially adjusted Breusch-Pagan statistics) are 

not significant (p-value = 0.852) indicating absence of remaining heteroskedasticity.  The LR-

test on the spatial autoregressive coefficient λ̂ is highly significant (p-value = 0.016).  The 

Wald-test on common factor hypothesis is not strongly significant, indicating no inherent 

consistency in the spatial error specification.  As noted by Anselin (1999), if these statistics 

had been highly significant, the implication would be that the spatial error model is 

inappropriate.  However, the LM-test on spatial lag dependence is significant, which tends to 

indicate that the spatial error model is not necessarily the appropriate specification.   

Before testing formally the relevance of the spatial lag model, we assess whether this 

remaining dependence is not due to the presence of remaining spatial heteroskedasticity.  We 

therefore assess whether there is significant presence of a) structural instability across the 

different regimes previously described, b) groupwise heteroskedasticity and finally c) a 

combination of both.  Neither of these effects is significant10, we then turn to the estimation of 

the spatial lag model, which can be formalized as follows: 

 

0T Tg Wg S y uρ α β= + + +  with 2(0, )t uu N Iσ∼                                      (2) 

 

                                                 
9   The convergence speed may be defined as: ln(1 ) /b T Tβ= − + .  The half-life is the time necessary for the 
economies to fill half of the variation, which separates them from their steady state, and is defined by: 

ln(2) / ln(1 )τ β= − + . 
10   Complete results available from the author upon request. 
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with the same notations as above.  The results are not displayed here due to space limitation11, 

but maximum likelihood estimation as well as two stages least square estimation indicate that 

the lag in (2) is not significant and the LR-test on spatial lag dependence is not significant 

neither.  Moreover, the model with the spatial error term achieves a better fit.  The appropriate 

model of absolute β -convergence is therefore the spatial error model12.   

When the same type of estimation is performed using the weight matrix k=5 based on 

the nearest neighbors, the results lead to a spatial error model too.  The results, displayed in 

columns 3 and 4 of table 2, show that the spatial dependence is greater in the case of this 

weight matrix since the value of Moran’s I is greater (3.850 versus 2.337) and is more 

significant.  With the same idea, λ̂ in the spatial error model (column 4) has increased 

compared to the results with the matrix based on accessibility (0.718 versus 0.527 for the ML 

estimation).  The convergence speed is greater too (1.81% versus 1.09%).  All the results 

displayed in table 2 indicate, firstly, that there is significant convergence in per capita income 

among Spanish regions and, secondly, the significant presence of spatial autocorrelation 

between regions.  In other words, estimating the convergence process without including the 

presence of these significant spatial effects would lead to unreliable results. 

 

β−convergence model in aggregate labor productivity 

When the same type of analysis is performed on the aggregate labor productivity, 

estimation results lead to a spatial error model for both matrices.  Convergence is significant 

and greater than income convergence ( β̂ = -0.027, see columns 1 and 2 of table 3).  However, 

spatial autocorrelation is smaller than the one for income convergence ( λ̂ is significant only 

for the GMM estimation and equals 0.277 versus 0.474 in the previous case for k=5 most 

                                                 
11   Complete results available from the author upon request. 
12   This is confirmed when the estimation is performed with other weight matrices, either based on the 
nearest/most accessible neighbors or on the great circle distribution.  
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accessible regions).  The unadjusted and spatially adjusted Breusch-Pagan statistics are not 

significant (p-value = 0.343) indicating absence of remaining heteroskedasticity.  The LR-test 

on the spatial autoregressive coefficient λ̂ is significant (p-value = 0.045) with k=5 nearest 

regions only, but the LM-test on spatial lag dependence is not significant for any of the weight 

matrices.   

 

<<insert table 3 here>> 

 

β−convergence model in labor productivity in agriculture 

In order to have a more precise idea of the β−convergence phenomenon among Spanish 

regions, the convergence process is tested for three sectors.  Convergence in labor 

productivity in agriculture is significant and slightly greater than income convergence too 

( β̂ = -0.017, see columns 3 and 4 of table 3).  Spatial autocorrelation takes the form of a 

spatial error model.  Again, λ̂ is significant only for the GMM estimation and is smaller than 

the one displayed for income spatial autocorrelation.  The unadjusted and spatially adjusted 

Breusch-Pagan statistics indicate an absence of remaining heteroskedasticity.  The LR-test on 

the spatial autoregressive coefficient λ̂ is not significant (p-value = 0.109) but is more 

significant than the LM-test on spatial lag dependence (p-value= 0.381).  Moreover, the 

Wald-tests on common factor hypothesis is not significant. 

 

β−convergence model in labor productivity in industry 

Labor productivity in industry is the only variable for which the appropriate 

β−convergence model is a spatial lag model (see model 2).  It reflects the fact that spatial 

autocorrelation in the convergence model is more important for this variable than for the other 

variables.  Convergence is highly significant (p-value= 0.007) and greater than for labor 
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productivity in agriculture ( β̂ = -0.022 versus –0.017, see columns 1 and 2 of table 4).  The 

lag, λ̂ , is significant only for the ML estimation.  It equals 0.406 and 0.372 respectively for 

k=5 most accessible regions and nearest regions.  The unadjusted and spatially adjusted 

Breusch-Pagan statistics indicate that there is an absence of remaining heteroskedasticity.  

There is no Wald-test on common factor hypothesis for a spatial lag model.  The LR-test on 

spatial lag dependence is not significant (p-value = 0.102) but is more significant than the 

LM-test on spatial error autocorrelation (p-value= 0.269).   

 

<<insert table 4 here>> 

 

β−convergence model in labor productivity in services 

Labor productivity in services presents the highest extent of convergence among our 

studied variables ( β̂ = -0.041 and is significant, see columns 3 and 4 of table 4).  This variable 

has a convergence speed of 6.8% and a half-life of 16.35 years only.  The appropriate 

convergence model is a spatial error model, of which the coefficient of spatial autocorrelation, 

λ̂ , is significant and high ( λ̂ = 0.800) for both ML- and GMM-estimations.  There is no 

remaining heteroskedasticity according to the unadjusted and spatially adjusted Breusch-

Pagan statistics.  The LR-test on spatial error autocorrelation is highly significant (p-value= 

0.000) whereas the LM-test on spatial lag dependence is not (p-value= 0.073) for both weight 

matrices. The Wald-test on common factor hypothesis is not strongly significant, except the 

Wald- test with the weight matrix k=5 most accessible regions (p-value= 0.003).  However, 

when the spatial lag model is tested on this variable, estimation results indicate that the spatial 

error model is the appropriate specification.   
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The results displayed in tables 2 to 4 show that a disaggregated analysis at the sectoral 

level of the convergence hypothesis is necessary in order to alter the conclusions drawn about 

the evidence of convergence in per capita income and aggregate labor productivity.  While 

testing for β−convergence and spatial effects for each of the three sectors of the economy, the 

results display that convergence speeds are not similar for all sectors and that spatial effects, 

always in the form of spatial autocorrelation, vary from one sector to another.  Indeed, the 

appropriate model specification is a spatial lag model for labor productivity in industry, 

whereas it is a spatial error model for all the other variables.  None of the previous models has 

shown significant evidence of spatial heterogeneity.  It may come from the fact that the spatial 

regimes detected at the initial period for each variable are not consistent over time.   

 

Section 5- σ -convergence and Index of Inequality 

 

5-1 σ -convergence 

As explained in section 2, β−convergence hypothesis has been widely criticized.  Quah 

(1993) argues that a negative relationship between growth and initial level of a variable does 

not necessarily imply a narrowing of inequalities.  The reduction in disparities across regions 

can be referred as σ -convergence (Barro and Sala-I-Martin, 1991, 1992) and measured by a 

decrease in the variance of the logarithm of the studied variable.   

 

<<insert figure 2 here>> 

 

The process of σ -convergence of GDP per capita is displayed in figure 2 above.  The 

variance of per capita GDP across regions increases until 1986, the accession date of Spain to 

the European Union, and decreases after 1989.  This last tendency seems to indicate that 
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income differences between regions narrowed slightly.  However, a deeper analysis is 

necessary to highlight what factors account for the evolution of per capita GDP across 

regions.  The first step decomposes the per capita GDP of a region i as the product of 

aggregate productivity per worker and the share of employment in total population.  In a 

logarithmic form, it is written as follows: 

 

log log log
ii i

gdp gdp w
pop w pop

    = +    
    

           (3) 

 

<<insert figure 3 here>> 

 

Figure 3 above displays the variance of the logarithm of labor productivity and 

employment per population.  We observe first a divergence in regional employment per capita 

until 1984.  After 1985, we find that σ -convergence in labor productivity is sharp and 

continues until the end of the period, whereas σ -convergence in employment per capita is 

small and stops in 1993.  As noted by Cuadrado-Roura et al. (1999), σ -convergence in labor 

productivity may be driven by the fact that the less developed economies imitate the 

technological and organizational processes at a lower cost than the one paid by the more 

advanced economies for research and development.  However, there are other forces that can 

lead to labor productivity convergence: the value of aggregate labor productivity depends on 

sectoral productivities as well as on the productive structure.  Therefore, since productivity in 

usually higher in industry or services than in agriculture, a transfer of productive resources 

from agriculture to the other sectors may explain a convergence process in total productivity 

that does not necessarily occur at the level of each individual productive sector. 
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<<insert figures 4, 5 and 6 here>> 

 

The σ -convergence results for agriculture are set out in figure 4.  There is no σ -

convergence for this variable until 1991, but rather a slight tendency towards divergence.  The 

process ceases to operate afterwards.  This result is an evidence that β -convergence found in 

section 4 is compatible with the absence of σ -convergence.  Following Cuadrado-Roura et 

al. (1999), we suggest that increasing differences in agricultural productivity may be due to 

random factors, like weather conditions, as well as to the individual specificity of each region 

as regards the type of agricultural production.  Moreover, some types of production lend 

themselves to increased productivity through the introduction of farming improvements 

whereas some others do not. 

With regards the industry sector, there is a sharp tendency to divergence until 1984 then 

the level of disparities in 1985 comes back to the one in 1983 and a fairly small σ -

convergence process that takes place afterward (see figure 5).  A similar behavior is observed 

on figure 6 for the services sector, where the level of disparities from 1985 to 1994 is higher 

than prior and after that period.  After 1994, the level of disparities comes back to the one 

prior 1985, therefore there is no evidence of σ -convergence throughout the period. 

 

5-2 Convergence in productive structure 

Since the previous analysis does not reveal that regional productivity disparities by 

sector have decreased over time, the question arises of how the aggregate labor productivity 

displays a clear evidence of σ -convergence over the studied period.  Following Cuadrado-

Roura et al. (1999), the reasons include, among others, the two following factors.  The first 

one relies on the varying weight of the productive sectors in the regions and its interplay with 

their average productivity levels.  For instance, if the weight of the services sector is greater in 
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the rich regions than in the poor ones, and if productivity growth is lower in services than in 

the other sectors, equal growth of the sectoral productivities in the different regions is 

compatible with a greater increase in aggregate productivity in the poor regions.  In fact, the 

mean growth rate of productivity in the services sector in Spain was 5.3% versus a mean 

growth rate in total productivity of 6.2% throughout our studied period.  In addition, the mean 

share of employment in the services sector in the five poorest regions (Badajoz, Orense, 

Granada, Córdoba, Jaén) was 13.7% over the period, whereas it was 20.2% in the five richest 

regions (Tarragona, Álava, Gerona, Baleares, Lérida).   

The second reason comes from a transfer of resources from the agricultural sector, 

where productivity is low, to the other productive sectors, where productivity is higher, taking 

place to a greater degree in the poor regions than in the rich ones.  In this respect, the share of 

agriculture in total employment in the five poorest regions has decreased by 54.8% over the 

period while it has decreased by 48.9% in the richest ones.   

 

This last argument suggests that convergence in sectoral structure across regions may 

have been an important source of productivity convergence.  To examine the extent to which 

employment structure has become more similar across regions, we introduce an index of 

inequality in productive structure based on the one of Cuadrado-Roura et al. (1999) and 

defined as follows: 

 

( ) ( ) ( )48

1
² ² ²it t it t it ti

I WA WA WI WI WS WS
=

= − + − + −  ∑         (4) 

 

where , ,it it itWA WI WS  denote, respectively, the weight of agriculture, industry and services in 

total employment in region i at time t; and , ,t t tWA WI WS  are the corresponding sectoral 
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weights at the national level.  The value of this index would be zero if the productive 

structures were the same across all the regions.   

 

<<insert figures 7 and 8 here>> 

 

This index is represented in figure 7 above and shows that, in terms of employment, the 

productive structure of the Spanish regions has become more uniform over time.  This index 

can be divided into the sum of inequalities in productive structure by sector as follows: 

 

( )48

1
²it ti

IDA WA WA
=

= −∑             (5) 

( )48

1
²it ti

IDI WI WI
=

= −∑             (6) 

( )48

1
²it ti

IDS WS WS
=

= −∑             (7) 

 

These indices are represented in figure 8.  It shows that the reason for the greater 

homogeneity in productive structures comes from an harmonization of agricultural structures 

among regions.  It is not due to an increase of the weight of agriculture in employment in the 

rich regions.  On the contrary, it comes from a transfer of resources from agriculture towards 

other productive sectors with a higher average productivity that has been more marked in the 

poor regions than in the rich ones.  This behavior helps to explain the co-existence of 

significant σ -convergence in aggregate productivity and the absence of it in regional 

productivity by sector.   
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Section 6- Conclusion 

This paper has presented an estimation of two concepts of convergence, namely β -and 

σ -convergence, on 48 Spanish regions over 1980-1996.  Estimation results display a clear 

evidence of β -convergence in income among NUTS III regions.  Moreover, various tests 

aiming at detecting the presence of spatial effects lead to a spatial error model as the most 

appropriate model specification.  Neglecting these effects would have led to unreliable results.  

The same type of analysis is then performed on the aggregate labor productivity and on labor 

productivity in three sectors: agriculture, industry and services.  Estimation results display 

evidence of significant β -convergence for each of these variables.  However, the results 

highlight the importance of comparing similar technologies since convergence speeds and 

spatial effects are not homogeneous across sectors.  Moreover, none of the previous 

estimations requires the presence of spatial heterogeneity.  Since the evidence of β -

convergence does not necessarily imply a narrowing of regional inequalities (Quah, 1993), 

σ -convergence is measured on each of the previous variables.  The analysis reveals that 

convergence occurs in aggregate labor productivity but not in productivities by sector.  The 

reason comes from a convergence in productive structure among regions.  This is due to a 

transfer of resources from agriculture towards more productive sectors that has been more 

marked in the poor regions than in the rich ones.   
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Table 1- Regions’ and codes’ name 

Code and name of the Spanish regions 

es111 La Coruña es242 Teruel es421 Albacete es522 Castellón de la 
Plana 

es112 Lugo es243 Zaragoza es422 Ciudad Real es523 Valencia 

es113 Orense es3 Comunidad de 
Madrid es423 Cuenca es53 Baleares 

es114 Pontevedra es411 Avila es424 Guadalajara es611 Almería 
es12 Principado de 
Asturias es412 Burgos es425 Toledo es612 Cadiz 

es13 Cantabria es413 León es431 Badajoz es613 Córdoba 
es211 Álava es414 Palencia es432 Cáceres es614 Granada 
es212 Guipúzcoa es415 Salamanca es511 Barcelona es615 Huelva 
es213 Vizcaya es416 Segovia es512 Gerona es616 Jaén 
es22 Comunidad 
Foral de Navarra es417 Soria es513 Lérida es617 Málaga 

es23 La Rioja es418 Valladolid es514 Tarragona es618 Sevilla 
es241 Huesca es419 Zamora es521 Alicante es62 Murcia 
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Table 2: Estimation results of the per capita GDP β-convergence model 
with weight matrix K=5 

 per capita GDP β-convergence model 
 K=5 most accessible regions K=5 nearest regions 
 1 2 3 4 
 OLS-White ML-ERR  OLS-White ML-ERR  

  ML GMM 
(iterated)  ML GMM 

(iterated) 

α̂ r  0.098 
(0.002) 

0.148 
(0.000) 

0.142 
(0.000) 

0.098 
(0.002) 

0.197 
(0.000) 

0.191 
(0.000) 

ˆ
rβ  -0.004 

(0.265) 
-0.010 
(0.018) 

-0.009 
(0.024) 

-0.004 
(0.265) 

-0.016 
(0.001) 

-0.015 
(0.002) 

λ̂  - 0.527 
(0.006) 

0.474 
(0.000) - 0.718 

(0.000) 
0.689 

(0.000) 
Convergence 

speed - 1.09% 1.01% - 1.81% 1.73% 

Half-life - 68.78 73.70 - 43.67 45.52 
Sq. Corr. - 0.027 0.027 - 0.0269 0.027 

LIK 183.665 186.563  183.665 192.465  
AIC -363.330 -369.127  -363.330 -380.930  
SC -359.587 -365.384  -359.587 -377.187  

Moran’s I 2.337 
(0.019) - 3.850 

(0.000) - 

LMERR 2.610 
(0.106) - 9.080 

(0.002) - 

R-LMERR 5.260 
(0.022) - 12.868 

(0.000) - 

LMLAG 1.652 
(0.199) - 6.666 

(0.009) - 

R-LMLAG 4.301 
(0.038) - 10.455 

(0.001) - 

Jarque-Berra 0.432 
(0.805) - 0.432 

(0.805) - 

White test 0.704 
(0.703) - 0.704 

(0.703) - 

BP-test for 
heteroskedasticity 

0.032 
(0.857) - 0.032 

(0.857) - 

BP test - 0.035 
(0.852) - - 0.263 

(0.608) - 

Spatial BP test - 0.035 
(0.852) - - 0.263 

(0.608) - 

LR test on spatial 
error dependence - 5.797 

(0.016) - - 17.599 
(0.000) - 

Wald test on 
common factor 

hypothesis 
- 3.311 

(0.069) - - 5.788 
(0.016) - 

LM test on spatial 
lag dependence - 4.970 

(0.026) - - 2.852 
(0.091) - 

 
Notes: p-values are in brackets. OLS-White indicates the use of heteroskedasticity consistent covariance 
matrix estimator. ML indicates maximum likelihood estimation. GMM indicates iterated generalized 
moments estimation (Kelejian and Prucha 1999). Sq. Corr. is the squared correlation between predicted 
values and actual values. LIK is value of the maximum likelihood function. AIC is the Akaike  information 
criterion. SC is the Schwarz information criterion. 
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Table 3: Estimation results of the β-convergence models in aggregate labor 
productivity and labor productivity in agriculture with weight matrix K=5 
 

 β-convergence model in aggregate labor 
productivity 

β-convergence model in labor productivity 
in agriculture GVA 

 K=5 most accessible 
regions K=5 nearest regions K=5 most accessible 

regions K=5 nearest regions 

 1 2 3 4 
 ML-ERR  ML-ERR ML-ERR ML-ERR 

 ML GMM 
(iterated) ML GMM 

(iterated) ML GMM 
(iterated) ML GMM 

(iterated) 

α̂ r  0.501 
(0.000) 

0.499 
(0.000) 

0.498 
(0.000) 

0.499 
(0.000) 

0.340 
(0.001) 

0.345 
(0.001) 

0.344 
(0.001) 

0.341 
(0.001) 

ˆ
rβ  -0.027 

(0.000) 
-0.027 
(0.000) 

-0.027 
(0.000) 

-0.027 
(0.000) 

-0.017 
(0.013) 

-0.017 
(0.012) 

-0.017 
(0.014) 

-0.017 
(0.014) 

λ̂  
0.299 

(0.209) 
0.277 

(0.000) 
0.329 

(0.093) 
0.334 

(0.000) 
0.174 

(0.497) 
0.270 

(0.000) 
0.139 

(0.537) 
0.099 

(0.000) 
Convergence 

speed 3.52% 3.50% 3.49% 3.49% 1.96% 2.00% 1.99% 1.96% 

Half-life 25.41 25.53 25.54 25.52 40.93 40.18 40.28 40.83 
Sq. Corr. 0.536 0.536 0.536 0.536 0.110 0.110 0.110 0.110 

LIK 191.307 - 191.812 - 119.21 - 119.09 - 
AIC -378.614 - -379.625 - -234.428 - -234.18 - 
SC -374.872 - -375.883 - -230.68 - -230.44 - 

BP test 0.898 
(0.343) - 1.201 

(0.273) - 0.001 
(0.970) - 0.000 

(0.989) - 

Spatial BP 
test 

0.898 
(0.343) - 1.201 

(0.273) - 0.001 
(0.970) - 0.000 

(0.989) - 

LR test on 
spatial error 
dependence 

3.004 
(0.083) - 4.015 

(0.045) - 2.563 
(0.109) - 2.319 

(0.127) - 

Wald test on 
common 

factor 
hypothesis 

3.879 
(0.049) - 2.118 

(0.145) - 1.209 
(0.271) - 0.669 

(0.413) - 

LM test on 
spatial lag 

dependence 

3.194 
(0.074) - 0.978 

(0.322) - 0.765 
(0.381) - 0.375 

(0.540) - 

Notes: see notes table 2 
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Table 4: Estimation results of the β-convergence models in labor 
productivity in industry and in services with weight matrix K=5 
 

 β-convergence model in labor 
productivity in industry GVA 

β-convergence model in labor productivity 
in services GVA 

 K=5 most accessible 
regions K=5 nearest regions K=5 most accessible 

regions K=5 nearest regions 

 1 2 3 4 
 ML-LAG  ML-LAG ML-ERR ML-ERR 

 ML IV 
(2SLS) ML IV 

(2SLS) ML GMM 
(iterated) ML GMM 

(iterated) 

α̂ r  0.403 
(0.003) 

0.410 
(0.004) 

0.317 
(0.021) 

-0.746 
(0.749) 

0.739 
(0.000) 

0.740 
(0.000) 

0.758 
(0.000) 

0.760 
(0.000) 

ˆ
rβ  -0.022 

(0.007) 
-0.024 
(0.006) 

-0.017 
(0.039) 

0.031 
(0.771) 

-0.041 
(0.000) 

-0.041 
(0.000) 

-0.042 
(0.000) 

-0.043 
(0.000) 

λ̂  
0.406 

(0.048) 
0.921 

(0.108) 
0.372 

(0.042) 
5.319 

(0.621) 
0.800 

(0.000) 
0.808 

(0.000) 
0.672 

(0.000) 
0.680 

(0.000) 
Convergence 

speed 2.79% 3.13% 2.01% - 6.82% 6.84% 7.18% 7.22% 

Half-life 30.46 27.75 39.99 - 16.35 16.32 15.89 15.84 
Sq. Corr. 0.170 0.164 0.177 0.123 0.182 0.182 0.182 0.182 

LIK 151.145 - 151.025 - 194.740 - 193.933 - 
AIC -296.290 - -296.049 - -385.481 - -383.866 - 
SC -290.676 - -290.435 - -381.738 - -380.124 - 

BP test 0.151 
(0.697) - 0.057 

(0.810) - 2.979 
(0.084) - 2.349 

(0.125) - 

Spatial BP 
test 

0.151 
(0.697) - 0.057 

(0.810) - 2.980 
(0.084) - 2.349 

(0.125) - 

LM (for 
industry) / 

LR (for 
services)test 

on spatial 
error 

dependence 

1.220 
(0.269) - 0.054 

(0.814) - 21.137 
(0.000) - 19.522 

(0.000) - 

Wald test on 
common 

factor 
hypothesis 

- - - - 8.601 
(0.003) - 2.609 

(0.106) - 

LR (for 
industry) / 
LM (for 

services) test 
on spatial lag  
dependence 

2.666 
(0.102) 

1.893 
(0.168) 

2.425 
(0.119) 

0.005 
(0.941) 

3.206 
(0.073) - 1.493 

(0.221) - 

Notes: see notes table 2.  IV stands for Instrumental Variables.  
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Figure 1- The regions of Spain 
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Note: See table 1 for the regions’ code and name.  This figure has been realized using Arcview GIS 3.2 

(Esri). 

 

Figure 2: σ -convergence in per capita GDP 

Dispersion of per capita GDP in pps (in log)
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Figure 3: σ -convergence in per capita employment and in labor 

productivity 
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Figure 4: σ -convergence in labor productivity in agriculture 
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Figure 5: σ -convergence in labor productivity in industry 

Dispersion in labor productivity in industry (in log)
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Figure 6: σ -convergence in labor productivity in services 

Dispersion in labor productivity in services (in log) 
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Figure 7: Total index of inequality in productive structure 
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Figure 8: Index of inequality in productive structure by sector 

Index by sector
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