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ABSTRACT: The purpose of this article is to analyze the dynamic trend of spatial dependence, which is not only 
contemporary but time-lagged in many socio-economic phenomena. Firstly, we show some of the commonly used 
exploratory spatial data analysis (ESDA) techniques and we propose other new ones, the exploratory space-time 
data analysis (ESTDA) that evaluates the instantaneity of spatial dependence. We also propose the space-time 
correlogram as an instrument for a better specification of spatial lag models, which should include both kind of 
spatial dependence.  Some applications with economic data for Spanish provinces shed some light upon these issues. 
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1. INTRODUCTION 

The purpose of this article is to analyze the dynamic trend of spatial dependence, making a 

differentiation between two types of spatial dependence: contemporary or instant and 

noncontemporary or lagged.  The first typr is the consequence of a very quick diffusion of the 

process over the neighboring locations, while the second one implies that a shock in a certain 

location needs several periods of time to diffuse over its neighborhood.  It is not easy to separate 

both types of spatial dependence but they must both be present very frequently when specifying 

a spatial dependence model. 

In effect, spatial dependence has usually been defined as a spatial effect, which is related to the 

spatial interaction existing between geographic locations and takes place in a particular moment 

of time.  In other words, spatial dependence is considered as the contemporary coincidence of 

value similarity with locational similarity and is formally expressed as a spatial autoregressive 

model, in which a variable y is a function of its spatial lag Wy (a weighted average of the value 

                                                 
* Earlier versions of this paper were presented at the XVIII Asepelt-Spain Annual Meeting 2004 at University of León 
(Spain) in June 2004, the Regional Economic Applications Laboratory seminars at the University of Illinois at Urbana-
Champaign in September 2004 and the First Seminar in Spatial Econometrics at Zaragoza (Spain) in October 2004. We 
appreciate comments from participants at these meetings. 
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of y in the neighboring locations, or spatial lag)1 for a same moment of time.  However, in most 

socio-economic phenomena this “coincidence in values-locations” (Anselin, 2001a) is not only 

an instant coincidence but also a final effect of some cause that happened in the past, one which 

has spread through geographic space during a certain period of time. 

In effect, when spatial dependence is produced by the existence of spatial interaction, spatial 

spillovers or spatial hierarchies in the endogenous variable of a spatial regression model, the 

spatial-lag or “simultaneous model of spatial dependence” (Anselin, 2001b) has been frequently 

mentioned in the literature as the solution.  Nevertheless, there are some authors that have 

considered this instantaneity of spatial dependence as problematic (Upton and Fingleton 1985, 

pp. 369), suggesting the introduction of a time-lag in the spatial dependence term, i.e. yt=ρWyt-k ; 

k=1,2,…In socioeconomic contexts, there is no doubt that a shock produced in a certain location 

(e.g. an income growth) will be probably diffused over its neighboring locations over a time 

interval.  Recently, Elhorst (2001) considered this topic and presents several single equation 

models that include a wide range of non-contemporary spatial dependence lags, not only in the 

endogenous but also in the exogenous variables.  Anselin (2001a) has presented a brief 

taxonomy for panel data models with different kind of spatial dependence structure for the 

endogenous variable (space, time and space-time), referring to them as pure space-recursive, 

time-space recursive, time-space simultaneous and time-space dynamic models.  Space-time 

dependence has also been specified in either theoretical frameworks (Baltagi et al., 2003; Pace et 

al., 2000) or panel data applications (Case, 1991; Elhorst, 2001; Yilmaz et al., 2002; Baltagi and 

Li, 2003; Mobley, 2003). 

In this article, we analyze the spatial dependence structure in regression models allowing for not 

only horizontal (static) but also space-time interaction (dynamic).  We propose the use of the 

space-time dependence regression model, that better expresses the effects due to spatial 

interaction as spatial diffusion phenomena, which is not only “horizontal” – simultaneous – but 

also time-wise.  Further, we try to answer two questions that can only be quantified by these 

kinds of models: when a shock is produced in a certain location, 1) “what proportion of this 

shock will be tranferred to the surroundings?” and 2) “how long does it take until the diffusion 

process is complete?” 
                                                 
1 W matrix is the so-called spatial weight matrix, which has been profusely defined in the literature (e.g., Cliff and 
Ord 1975, 1981; Anselin 1988).  
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The paper proceeds as follows: in the next section, we show some of the commonly used 

exploratory spatial data analysis (ESDA) techniques and we propose some new ones, the 

exploratory space-time data analysis (ESTDA) that evaluates the instantaneity of spatial 

dependence.  In section 3, a space-time correlogram is used as an instrument for the 

identification of space-time dependence models.  It is illustrated with some examples for 

economic series of Spanish provinces is the period 1986-2002.  Some summary conclusions 

complete the paper. 

 

2. EXPLORATORY SPACE-TIME DATA ANALYSIS (ESTDA) 

Before analyzing the space-time confirmatory process, some ESDA tools are shown to illustrate 

space-time processes.  First, we briefly present (without going into further details) the bivariate 

Moran spatial autocorrelation statistic to specifically apply it to analyze the same variable at two 

different moments of time.  In this section, we present new indicators and exploratory tools for 

the analysis of space-time processes, which have been defined as “exploratory space-time data 

analysis” or ESTDA. 

Our goal is twofold: first, we contribute towards obtaining appropriate indicators to evaluate the 

dynamic diffusion of spatial dependence and secondly, we develop some statistics for the 

detection of contemporary – simultaneous – and non-contemporary – lagged – spatial 

dependence present in a wide-range of socio-economic phenomena. 

2.1. Bivariate Moran spatial autocorrelation statistic 

The bivariate Moran spatial autocorrelation statistic quantifies the spatial dependence degree 

existent between two variables Yk, Yl in a same location i (Anselin et al. 2002). This yields a 

multivariate counterpart of a Moran-like spatial autocorrelation statistic as follows: 

(1) k l
kl

k k

z WzI
z z
′

=
′

  

(2) or: kl k lI z Wz n′=   

where: [ ] /k k k kz Y µ σ= − and [ ] /l l l lz Y µ σ= −  have been standardized such that the mean is zero 

and standard deviation equals one; W is the familiar spatial weight matrix that defines the 
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neighborhood interactions existent in a spatial sample (Anselin, 1988); in this context, the usual 

row-standardized form of the spatial weights matrix can be used, yielding an interpretation of the 

spatial lag as an “average”2 of neighboring values; and n is the number of observations.  Since 

the z variables are standardized, the sum of squares used in the denominator of (1) is constant 

and equal to n, no matter whether zk or zl are used. 

Our focus is on the linear association between a variable zk at a location i (zik), and the 

corresponding “spatial lag” for the other variable, [Wzl]i.  This concept was derived from 

multivariate spatial correlation (Wartenberg, 1985) and thus centers on the extent to which 

values for one variable zk observed at a given location show a systematic (more than likely under 

spatial randomness) association with another variable zl observed at the neighboring locations. 

The significance of this multivariate spatial correlation can be assessed in the usual fashion by 

means of a randomization (or permutation) approach.  In this case, the observed values for one of 

the variables are randomly reallocated to locations and the statistic is recomputed for each such 

random pattern. 

There is also a bivariate generalization of Moran scatterplot that corresponds with a scatterplot 

with the zl spatial lag, Wzl, on the vertical axis and the variable zk on the horizontal axis (using 

the variables in standardized form).  The slope of the regression line in this scatterplot is equal to 

the value of the expression (2).  In addition, it is also possible to examine each individual 

location in terms of its placement within the four quadrants of the scatterplot, which define the 

four types of multivariate spatial association. 

2.2. Space-time autocorrelation 

When considering both space-time dimensions, some ESTDA tools can be defined to analyze 

and visualize the space-time structure of a distribution.  These are the cases of the Moran space-

time autocorrelation statistic, space-time Moran scatterplot, Moran space-time autocorrelation 

function (MSTAF) and Moran’s I line graph. 

2.2.1. Moran space-time autocorrelation statistic 

Instead of being completely different, variables zl and zk could be the same variable observed in 

two instants of time, t and t-k, with the only limitation that future values cannot explain past 

                                                 
2 It corresponds with an average but it is not a mean in a strict sense. 
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ones.  In this case, the bivariate Moran’s I computes the relationship between the spatial lag, Wzt, 

at time t and the original variable, z, at time t-k (k order time lag).  Therefore, this statistic 

quantifies the influence that a change in a spatial variable z, that operated in the past (t-k) in an 

individual location i (zt-k) exerts over its neighborhood at the present time (Wzt).  Hence, it is 

possible to define the Moran space-time autocorrelation statistic as follows: 

(3) ,
t k t

t k t
t k t k

z WzI
z z
−

−
− −

′
=

′
  

where, as in the last case, the denominator can be substituted by n as this variable z is also 

standardized.  The value adopted by this index, as in (1), corresponds with the slope in the 

regression line of Wzt on zt-k.  Note that for k=0, this statistic (3) coincides with the familiar 

univariate Moran’s I that from now on, we denote as It. 

Since the Moran’s space-time autocorrelation coefficient equals to the slope of the regression of 

Wzt-k on zt, it is possible to connect this statistic with the standard Pearson correlation coefficient 

between these two variables: 

(4) ,

1
( , )( , )

( ) ( ) ( )t k t

t k t
t k t

t k t z Wz
t k t t

z WzCov z Wz nCorr z Wz r
Var z Var Wz Var Wz−

−
−

−
−

′
= = =   

(5) or: ,
, ( )t k t

t k t
z Wz

t

I
r

Var Wz−

−=   

The Moran space-time autocorrelation statistic can also be expressed as: 

(6) , , ( )
t k tt k t z Wz tI r Var Wz
−− =   

2.2.2. Space-time Moran scatterplot 

In parallel with the bivariate Moran scatterplot (Anselin et al. 2002), the space-time Moran 

scatterplot corresponds with a scatterplot with the zt spatial lag, Wzt, on the vertical axis and the 

variable zt-k on the horizontal axis (using the variables in standardized form).  The slope of the 

regression is equal to the value of the expression (3).  In this case, it is also possible to examine 

each individual location as associated with the four quadrants of the scatterplot, which are the 

four types of space-time spatial association. 
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In figure 1, two different cases are shown.  On the left hand side, the space-time Moran 

scatterplot shows on the horizontal axis the bank deposits rate3 of the 50 Spanish provinces in 

1990 (D90) and on the vertical axis, the correspondent spatial lag in 2002 (W_D02), considering 

W as a row-standardized contiguity matrix (two provinces are neighbors if they share a common 

border).  As can be seen, there is a high connection between the bank deposits rate variable in 

1990 and its spatial lag 12 years later, as it is shown by the Moran space-time autocorrelation 

statistic (I90,02=0.5973; p-value=0.001).  In the right graph, we have represented a different 

situation of non-space-time autocorrelation between population for Spanish provinces in 1986 

and the corresponding spatial lag in 2002 (I86,02=-0.071; p-value=0.427) . 

Figure 1: Space-time Moran scatterplot 

Bank deposits rate Population 

  

Source: Estimates by authors with GeoDa (Anselin, 2003) 

 

2.2.3. Moran space-time autocorrelation function (MSTAF) 

The MSTAF is the result of plotting the values of the Moran space-time autocorrelation statistic 

(3), adopted by a variable in a certain period of time.  It is a coordinate graph in which the Moran 

coefficient values are plotted on the vertical axis and the time lags on the horizontal one.  The 

first value corresponds to the contemporary case, k=0, which is the univariate Moran’s I (It), 

whereas the other ones are proper Moran space-time autocorrelation coefficients (It-k,t).  This 

graph visualizes the influence that a change in a spatial variable z, that operated in the past (from 
                                                 
3 Definitions for all the variables used in this paper are shown in Table 1. 
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t to t-k) in an individual location i (zt-k) exert over its neighborhood in the present time (Wzt). 

Inference is necessary to evaluate the significance of It-k,t values and, as a result, the existence or 

absence of spatial autocorrelation, either a contemporary or non-contemporary one. 

In figure 2, we have represented this MSTAF function for three variables: bank deposits rate, 

price index and population of the 50 Spanish provinces in year 2002.  In the horizontal axis, we 

have represented 16 time lags (period 1986-2002) and the initial moment, lag 0 (year 2002).  As 

can be appreciated, there is clear evidence of non-contemporary spatial dependence in the first 

function, as all the values exhibit significant high time-lagged values4 and it shows an increasing 

trend (the influence of past values of this variable in a certain location over its neighborhood in 

the present increases with time).  The price index variable also has some high time-lagged values 

in absolute terms (positive in the beginning and negative the end of the period), providing 

evidence of non-contemporary spatial dependence.  Nevertheless it shows a decreasing trend, i.e. 

the influence of past values of this variable in a certain location over its neighborhood in the 

present decreases with time in this period. 

Figure 2: Moran space-time autocorrelation function (MSTAF) 

Bank deposits rate, 2002  Price index, 2002 Population, 2002 

   

 

 

 

 

 

Note: □ is 5% significance level, permutation approach (999 permutations). Source: Self-elaboration. 

 

Regarding the population MSTAF function, it shows very low, almost constant, negative values 

that are not significant throughout all the period.  We can conclude that there is no spatial 

                                                 
4 All inference computations were done with the permutation approach and 999 permutations. 
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autocorrelation, either contemporary or lagged ones, in the population function of Spanish 

provinces during 1986-2002. 

2.2.4. Moran’s I line graph. 

The Moran’s I line graph allows showing the evolution of spatial dependence in a period of time. 

Other authors have already used this plot to explore the dynamics of contemporary spatial 

dependence in a period of time (Rey and Montouri, 1999).  In figure 3, we have represented this 

coefficient trend for the former provincial variables from 1986 to 2002: bank deposits rate, index 

price and population.  As can be seen, contemporary spatial dependence is very significant and 

constantly high in all bank deposits rate distributions (especially in 1990 and 1992) and almost 

all the price index ones (with the exception of 1994 and 1996).  On the contrary, all the 

population variables have non-significant low Moran’s I values during the whole period.  The 

economic interpretation of these results points out a different behavior of these distributions 

throughout the Spanish provinces in 1986-2002: while provinces with relatively high (low) bank 

deposits rate/price index tend to be located, in a same moment of time, nearby other provinces 

with high (low) bank deposits/prices more often than would be expected due to random chance, 

population distributions are not clustered at all. 

Figure 3: Figure 3: Moran’s I line graph 

Bank deposits rate, 2002  Price index, 2002 Population, 2002 

 

 

 

 

 

 

 

 

Note: □ is 5% significance level, permutation approach (999 permutations). Source: Self-elaboration. 
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2.3. Moran space-time partial autocorrelation coefficients 

There is no doubt that the spatial dependence measures that have been presented include 

different sources of dependence that are difficult to separate.  Formally: 

(7) ( , ) 0it jsCov z z ≠   

where sub-indexes i, j are different spatial locations and t, s are different instants of time. 

Therefore, we consider the following types of dependencies: 

(a) there is dependence in expression (7) that is the result of time evolution: 

(8) ( , ) 0it jsCov z z ≠ ;  i j∀ =   

This expression affirms that (for s=t-k) the value of the z variable in period t is more or less 

related to t-k.  This assertion is more correct for lower values of k. 

(b) there is a dependence in expression (7) that is the result of spatial interactions: 

(9) ( , ) 0it jsCov z z ≠ ;  t s∀ =   

This second type of dependence –spatial dependence- can be produced by two sources: 

(b1) Simultaneous or contemporary dependence constitutes the usual definition of spatial 

dependence in the literature and it is the consequence of an instant, very rapid, spatial diffusion 

of a phenomenon in geographic space.  It can be connected to or the consequence of a lack of 

concordance between a spatial observation and the region in which the phenomenon is analyzed. 

(b2) Lagged or non-contemporary dependence is the result of a slower diffusion of a 

phenomenon towards the surrounding space.  This kind of dependence is due to the usual 

interchange flows existing between neighbor areas, which requires of a certain period of time to 

be tested. 

Although it is very difficult to divide spatial dependence into its two dimensions, it is worth 

trying to compute them separately in order to correctly specify a spatial process that exhibits 

spatial dependence.  One of the aims of this article is to show a new range of ESTDA tools that 

allow justifying the inclusion of both kind of spatial lags, contemporary (Wyt) and time-lagged 

(Wyt-k) ones, to explain yt in a spatial regression.  Some coefficients can be defined to evaluate 
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the inclusion of a space-time lag term in a spatial regression.  The basic underlying idea consists 

of eliminating the influence of one of the dimensions in order to compute separately 

contemporary and non-contemporary dependence.  For this purpose, we substitute in (6) the 

space-time correlation coefficient by a partial correlation one. 

A first expression computes the correlation between variable z in period t-k and its spatial lag Wz 

in period t removing the influence of z in period t.  It can be defined as Moran space-time 

partial autocorrelation statistic: 

(10) , ( , ) ( ) ; 1,2,..., 1P
t k t t k t t tI Corr z Wz z Var Wz k t− −= = −   

where ( , )t k t tCorr z Wz z−  is the partial correlation coefficient of variables zt-k and Wzt after 

eliminating the correlation from zt: 
,, ,

2 2
, ,

( , )
1 1

t k t t
tt t tt kt k

t t tt k

z zz Wz Wz z

z z Wz z

Corr z Wz z
r r r

r r
−

−−

−

⋅
=

⋅

−

− −
 , where r is the 

standard Pearson correlation coefficient.  Therefore, it is possible to express this statistic as a 

function of both Moran’s I and space-time Moran’s I: , ,

2 2
, ,1 1

t k t tP
t k

tt k

t t tt k

z z

z z Wz z

I
I

I r

r r
−

−
−

−

− ⋅
=

⋅− −
. 

This indicator removes contemporary spatial dependence from the relationship between variables 

zt-k and Wzt.  If the pattern of spatial dependence is one that can be captured by contemporary 

spatial autoregression, then the partial autocorrelation will be close to zero.  On the contrary, if 

the process is one that can be captured by non-contemporary spatial dependence, then ,
P
t k tI −  will 

be significantly different from zero. 

The complementary expression consists of computing contemporary, or instant, spatial 

dependence after removing lagged spatial dependence by the means of an index that can be 

defined as the partial Moran’s I: 

(11) ( , ) ( ) ; 1,2,..., 1kP
t t t t k tI Corr z Wz z Var Wz k t−= = −   

where ( , )t t t kCorr z Wz z −  is the partial correlation coefficient of variables zt and Wzt after 

eliminating the correlation from Wzt-k: 
,, ,

2 2
, ,

( , )
1 1

t t t k
tt t tt k t k

t tt k t k

z zz Wz Wz z

z z Wz z

Corr z Wz z
r r r

r r
−

− −

− −

⋅
=

⋅

−

− −
.  Therefore, 
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it is possible to express this statistic as a function of both Moran’s I and space-time Moran’s I: 

,,

2 2
, ,1 1

k
t t k tP

t
tt k

t tt k t k

z z

z z Wz z

I
I

r I

r r
−−

− −

− ⋅
=

⋅− −
. 

This indicator removes lagged spatial dependence from the contemporary relationship between 

variables zt and Wzt.  If the pattern of spatial dependence is one that can be captured by lagged 

spatial autoregression, then the partial Moran’s I will be close to zero.  On the contrary, if the 

process is one that can be captured by contemporary spatial dependence, then kP
tI  will be 

significantly different from zero.  The inference of the partial correlation coefficients can be 

applied to both space-time autocorrelation statistics, as they are the result of multiplying the 

former by a constant. 

The results obtained for these indexes for provincial bank deposits rate, price index and 

population distributions in period 2002 are in figure 4.  The bold line corresponds to ,
P
t k tI −  

(Moran’s space-time partial correlation coefficient) whereas the thin line is the one of kP
tI  

(partial Moran’s I).  The interpretation of the results is as follows.  In the case of the bank deposit 

rate, the ,
P
t k tI −  function has higher significant values than the kP

tI  during the whole period, while 

in the case of price index, ,
P
t k tI −  function has higher values than kP

tI  only in the first three years 

and there is an inflexion in lag 4 (1998), from which the partial Moran’s I values are higher.  In 

this case, the kP
tI has significant values from lag 6 to the end of the period and ,

P
t k tI −  function has 

significant values for lags 2, 10, 11, 12, 15, 16, though the last 5 ones have negative values, 

which makes no economic sense.  So we can conclude on the one hand, that there is only a non-

contemporary spatial dependence in the explanation of bank deposits rate in 2002, which is 

increases to the end of the period.  On the other hand, it can also be stated that non-contemporary 

spatial dependence is also present as a factor in the explanation of the price index in 2002, but 

only in lag 2 (2000), does it have both economic and statistical significance.  Therefore, a slower 

spatial diffusion speed is expected in bank deposits rate, but the price index has a much quicker 

diffusion speed. 
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Figure 4: Moran space-time partial autocorrelation functions 

Bank deposits rate, 2002  Price index, 2002 Population, 2002 

  

 

 

 

 

 

 

 

Note: • is 5% significance level. Source: Self-elaboration. 

 

In the case of population, there is no evidence of either instant or lagged spatial effect, as both 

,
P
t k tI −  and kP

tI  values are constant and very close to zero. 

 

3. IDENTIFICATION OF SPACE-TIME REGRESSION MODELS 

The joint representation of the Moran’s space-time autocorrelation function (MSTAF) in 

combination with the Moran space-time partial autocorrelation functions (MSTPF) leads to the 

space-time correlogram, which is useful to identify space-time autocorrelation processes. 

Therefore, this correlogram is a two-graph representation of three functions: a total 

autocorrelation function ( ,t k tI − ) and two partial ones ( ,
P
t k tI − , kP

tI ). 

The identification process should be conducted in two steps as follows: 

• First, the Moran space-time autocorrelation function (MSTAF) indicates the existence (or 

non-existence) of dynamic spatial dependence.  If the MSTAF values are significant (using the 

regular inference process) we can conclude that there is spatial and temporal dependence in the 

corresponding distribution, and vice versa.  The MSTAF trend is an indicator of the diffusion 

speed of the spatial distribution: 

-0.30

-0.20

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0 1 2 3 4 5 6 7 8 9 10 111213141516

Corr (D02-k, WD02 / D02)
Corr (D02, WD02 / D02-k)

-0.40

-0.30

-0.20

-0.10

0.00

0.10

0.20

0.30

0.40

0 1 2 3 4 5 6 7 8 9 10 111213141516

Corr (P02-k, WP02 / P02)
Corr (P02, WP02 / P02-k)

-0.40

-0.30

-0.20

-0.10

0.00

0.10

0.20

0.30

0.40

0 1 2 3 4 5 6 7 8 910 111213141516

Corr (P02-k, WP02 / P02)
Corr (P02, WP02 / P02-k)



Space-time lags: specification strategy in spatial regression models  

 

13

13

A decreasing trend in this function points out a quicker space-time diffusion of the 

spatial distribution, as correlations between zt-k and Wzt are lower for higher values of k. 

An increasing trend in MSTAF is a symptom of a slower space-time diffusion of the 

spatial distribution, as past values zt-k will have more influence on the present spatial 

lagged ones (Wzt). 

A lack of trend, with low values, in MSTAF indicates that there is no space-time 

diffusion in the spatial distribution, so the analysis should finish in this step. 

• Secondly, the Moran space-time partial autocorrelation functions (MSTPF) are the 

instrument to determine whether the existent spatial dependence can be divided into instant and 

lagged or if it is only instant or only lagged spatial dependence. 

Contemporary or instant spatial dependence is present in a variable if only the partial 

Moran’s I has significant values. In this case, only the present values of variable y (yt) can 

explain its present spatial lag (Wyt). In a spatial regression, if an endogenous variable yt exhibits 

significant MSTAF and partial Moran’s I values, the spatial autocorrelation detected by this 

correlogram can be completely captured by a contemporary spatial lag of yt (Wyt) as an 

explicative variable in the model. 

(12) t t ty Wyα ρ ε= + +   

ρ is the spatial parameter to estimate and ε the error term.  This the well-know spatial-lag model. 

In this case, the use of ordinary least squares (OLS) in the presence of non-spherical errors 

would yield inconsistent estimators due to the presence of a stochastic regressor Wyt.  Therefore, 

this model must be estimated by ML or instrumental variables (IV) method (for a more extensive 

review, see Anselin, 1988). 

Non-contemporary or lagged spatial dependence is present in a variable if only the Moran 

space-time partial autocorrelation function has significant values.  In effect, past values of 

variable y (yt-k) completely explain its present spatial lag (Wyt), so yt and Wyt are not correlated. 

In this case, the existence of spatial dependence in an endogenous variable yt, detected by the 

correlogram, can be completely captured by a space-time lag of y (Wyt-k) as an explicative, 

exogenous, variable in the model. 
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(13) t t k ty Wyα ρ ε−= + +   

This model can be estimated by OLS, as the spatial-lag is not correlated with the errors.  The 

most explicative time lagged variable (yt-k) should be the one with highest value in the MSTAF. 

In practice, the most explicative time lagged variable (yt-k) is not so easy to find.  Several 

alternative models should be estimated to determine the best space-time lag from the group of 

most relevant values in MSTAF. 

If these significant values of the Moran space-time autocorrelation function are closer to the 

present time (lag 0), it can be said that the corresponding variables reveal a quick spatial 

diffusion process.  On the other hand, if the significant values are concentrated farther from the 

initial time lags, the variable will have a slower spatial diffusion process. 

Mixed contemporary and non-contemporary spatial dependence is present in a variable if 

both partial functions have high significant values for the same periods.  In this case, not only 

present but also past values of variable z can completely explain its present spatial lag. 

Therefore, the existence of spatial dependence in an endogenous variable yt, detected by the 

correlogram, can be captured by both a spatial lag and a space-time lag of y (Wyt, Wyt-k) as 

explicative (exogenous) variables in the model. 

(14) t 1 t 2 t k ty Wy Wyα ρ ρ ε−= + + +   

ρ1, ρ2 are spatial parameters to estimate.  This is also a space-lag model so it can be only 

estimated by ML or IV.  In this case, the most explicative time lagged variable (yt-k) should also 

be determined from the group of most significant values in both partial functions. 

In figure 5, we show the space-time correlograms of 3 variables: banks deposits rate, price index 

and per capita telephone lines (population is excluded as no space-time autocorrelation has been 

detected). 
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Figure 5: Space-time correlograms 
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Note: □ is 5% Moran’s I significance level (MSTAF). • is 5% significance level (MSTPF). Source: Self-elaboration. 
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variable, per capita telephone lines, has a peculiar shape, with high and almost constant values 

from lags 1-9 (2001-1993), which is indicative of non-contemporary spatial dependence that 

decreases from lag 9 to the end of the period, pointing out the predominance of instant 

dependence in this period.  Therefore, two possible solutions could be expected in this variable: 

either non-contemporary spatial dependence during 1993-2001 or both contemporary and non-

contemporary spatial dependence afterwards. 

Regarding to the MSTPF plots, in the bank deposits rate variable 2002 the Moran space-time 

partial autocorrelation function is always higher than the partial Moran’s I and all its values have 

less than 5% significance level (except lag 1).  So this is a case of pure non-contemporary or 

lagged spatial dependence (expression 13).  That is why the existence of spatial dependence in 

bank deposits rate in 2002 is captured by a space-time lag variable, that must be found from the 

group of those Moran’s space-time partial autocorrelation with most significant (highest) values 

(e.g. lags 10, 11, 12).  The selection of the best specification must be determined after the 

corresponding estimation of these space-time models (for instance, the model with best measure 

of fit –e.g. the AIC5).  As it shown in table 2, in the case of bank deposits rate, all the models 

points out the clear supremacy of lagged spatial dependence over instant one, which is never 

significant.  The best specification corresponds with model (13), a non-contemporary spatial 

model, in which the only exogenous variable of bank deposits rate in 2002 is its corresponding 

space-time lag in 1990 (k=12). Thus, it can also be concluded that the spatial diffusion process of 

this variable in 2002, at the provincial level in Spain, is strong (with a high coefficient) and slow, 

as it lasts 12 years. 

(15) D̂02 0.008 0.85 WD90= + ⋅   

In the price index variable, partial Moran’s I function is always higher than the Moran space-

time partial autocorrelation, with the exception of lags 1 to 3, though only lag 2 have less than 

5% significance level (as we have excluded significant negative values for not having economic 

sense).  Therefore, this is also a non-contemporary spatial dependence case, where lagged spatial 

dependence is stronger than instant one.  So spatial dependence in the price index variable in 
                                                 
5 The Akaike Information Criterion (AIC) is a ML-based statistic that, as well as the log likelihood (LIK) measure, 
is appropriate to compare models estimated by different methods (e.g. OLS and ML). But AIC corrects the LIK for 
overfitting, which is very important when also comparing models with different number of regressors (Anselin, 
1992). In order to preserve the normality assumption, which is convenient when using the AIC, all the models have 
been estimated in deviations to the mean. It also allows making comparisons between coefficients. 



Space-time lags: specification strategy in spatial regression models  

 

17

17

2002 is captured by a space-time lag variable in lag 2 (P00).  After the corresponding estimation 

of these space-time models, shown in table 2, in the price index variable only a few models have 

significant estimates and most of them have a lagged spatial dependence variable.  The best 

specification corresponds with model (13), a non-contemporary spatial model, in which the only 

exogenous variable of price index in 2002 is its corresponding space-time lag in 2000 (k=2). 

Thus, it can also be concluded that the spatial diffusion process of this variable in 2002, at the 

provincial level in Spain, is quick -it lasts only 2 years- but weaker than in the previous example 

(lower coefficient). 

(16) P̂02 0.02 0.59 WP00= + ⋅   

In per capita telephone lines, the Moran space-time partial autocorrelation function is higher than 

the partial Moran’s I from the beginning to lag 7 and the contrary from lag 8 to the end.  There 

are a lot of significant values (with less than 5% significance level) in both functions, with the 

exception of lags 11 and 13, in the first one, and lags 1 to 6, in the second.  There are some 

periods in which both functions have significant values: lags 7-10 (1992-1995), 12 (1990) and 

15-16 (1986-1987).  This is a clear indication that spatial dependence can be decomposed in two 

components: instant and lagged.  Spatial dependence in the per capita telephone lines variable in 

2002 is captured by both contemporary and non-contemporary spatial dependence specification. 

The lagged spatial lag term must be selected from the periods in which both partial functions 

have significant values.  After the corresponding estimation of these space-time models, shown 

in table 2, the best specification corresponds to a mixed contemporary and non-contemporary 

spatial model, in which the explicative variables of per capita telephone lines in 2002 are its 

corresponding space-time lags in 2002 and 1993 (k=9). 

(17) T̂02 0.38 0.38 WT02 0.69 WT 93= + ⋅ + ⋅   

Thus, it can also be concluded that this variable in 2002, at the provincial level in Spain, has two 

spatial diffusion processes: an instant (very quick) process and a slower (9 years) one, though the 

slower-lagged process is almost half stronger than the quicker-instant one. 

The other two variables also have been analyzed and their correspondent space-time 

correlograms are shown in the figure in the Appendix.  We have obtained their corresponding 

space-time correlogram and highlighted the significant values and we have also estimated all the 
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models (the results are in the Appendix).  Note that the employment rate can has a strong spatial 

dependence that can be decomposed in two components, lagged and instant.  So spatial diffusion 

has also two speeds for this variable: a quicker one and a slower spatial diffusion, which is 

stronger and lasts 10 years. And finally, per capita registered cars variable is another case of pure 

non-contemporary spatial dependence model with a strong slower spatial diffusion effect (12 

years). 

 

6. CONCLUSIONS 

The main aim of this paper was the analysis of the dynamics of spatial dependence making a 

differentiation between two types of spatial dependence: instant or contemporaneous and lagged 

or non-contemporaneous.  The first one is the consequence of a very quick diffusion of the 

process over the neighboring locations, while the second one implies that a shock in a certain 

location needs of several periods of time to take place and be tested over its neighborhood.  

Hence, we propose the use of the space-time dependence regression model, which better 

expresses the effects due to spatial interaction as spatial diffusion phenomena, which is not only 

“horizontal” or simultaneous but also time-wise. 

For the fulfillment of this aim, we propose new exploratory space-time data analysis (ESTDA) 

tools that evaluate the instantaneity of spatial dependence and a space-time correlogram is used 

as a valid instrument for the identification of space-time dependence models.  In the second part 

of this paper, we illustrated the process for the identification of different types of spatial 

dependence in some variables, with the help of the space-time correlogram.  We have shown that 

spatial dependence, when present in a variable, can be decomposed in two components -lagged 

and instant- or in case of weaker instant spatial dependence, only a space-lag spatial dependence 

should be specified. 

All the shown instruments allow us to answer the two questions we proposed in the introduction, 

namely when a shock is produced in a certain location, 1) “which proportion of this shock will be 

translated to the surroundings?” and 2) “how long does it take until the diffusion process 

completely end up?” 

Referring to the first question, in all the analyzed variables, a greater proportion of a shock in a 
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location was translated to its surroundings.  In the case of per capita telephone lines and 

employment rate, both kind of spatial dependence are present, though the proportion of a shock 

occurred in the past is bigger in both cases than the impact of a shock happened in the present 

moment.  Analysis of the second question reveals that there is more diversity between variables. 

For example, index price shows a quick –but weaker- speed of spatial diffusion (2 years), 

whereas per capita registered cars and bank deposits present a strong but lower speed (12 years 

both). 
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Appendix 

Table 1 

Definition of the variables used in the models 
 

Variable Source 

D Bank deposits rate (per capita), period 1986-2002, Spanish 
provinces (euro) Banco de España 

POP Population, period 1986-2002, Spanish provinces INE 
P Price index, period 1986-2002, Spanish provinces (1992=100) INE 

T Per capita telephone lines, period 1986-2002, Spanish 
provinces Telefónica, S.A. 

E Employment rate, period 1986-2002, Spanish provinces INE 

R Per capita registered cars, period 1986-2002, Spanish 
provinces DGT 



Space-time lags: specification strategy in spatial regression models  

 

21

21

 
Annex: Space-time correlograms of other variables 
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Note: □ is 5% Moran’s I significance level (MSTAF). • is 5% significance level (MSTPF). Source: Self-elaboration. 
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Table 2 
    Bank deposits rate Price index pc Telephone lines Employment rate pc Registered cars 

Time Spatial (13) (14) (13) (14) (13) (14) (13) (14) (13) (14) 
lag lag Coef. AIC Coef. AIC Coef. AIC Coef. AIC Coef. AIC Coef. AIC Coef. AIC Coef. AIC Coef. AIC Coef. AIC 
1 2001 0.91 116.35 0.93 118.35 0.55 139.21 0.54 141.20 1.08 76.27 1.00 78.19 0.94 97.71 0.71 98.83 0.93 127.40 0.91 129.39 
  2002     -0.02       0.01       0.08       0.24       0.03   
2 2000 0.87 115.01 0.88 117.01 0.59 137.20 0.67 139.10 1.06 77.07 0.91 78.71 0.95 89.77 0.90 91.72 0.76 130.07 0.61 131.50 
  2002     -0.01       -0.09       0.15       0.06       0.19   
3 1999 0.85 116.16 0.80 118.12 0.55 138.47 0.53 140.46 1.05 78.70 0.82 79.61 0.95 89.46 0.90 91.39 0.74 129.26 0.63 130.90 
  2002     0.06       0.03       0.25       0.06       0.15   
4 1998 0.87 116.49 0.83 118.46 0.50 140.87 0.35 142.34 1.04 79.27 0.79 79.82 0.96 87.94 0.99 89.93 0.73 129.26 0.61 130.82 
  2002     0.05       0.17       0.27       -0.03       0.17   
5 1997 0.87 116.44 0.82 118.41 0.57 141.17 0.38 142.46 1.04 78.90 0.79 79.51 0.96 91.71 0.84 93.38 0.69 130.98 0.53 132.05 
  2002     0.05       0.19       0.27       0.13       0.23   
6 1996 0.84 115.63 0.81 117.62 0.33 144.52 0.03 143.77 1.04 79.09 0.78 79.54 0.97 95.08 0.70 96.72 0.70 132.16 0.51 132.85 
  2002     0.03       0.33       0.28       0.28       0.27   
7 1995 0.85 113.42 0.89 115.39 0.13 145.55 -0.03 143.76 1.03 80.21 0.76 80.39 0.97 96.47 0.70 96.72 0.67 132.79 0.47 133.29 
  2002     -0.05       0.35       0.30       0.28       0.28   
8 1994 0.83 114.24 0.79 116.19 0.03 145.88 -0.12 143.52 1.01 94.08 0.51 86.43 1.01 95.33 0.72 94.99 0.66 133.58 0.45 133.62 
  2002     0.05       0.37       0.55       0.30       0.31   
9 1993 0.84 113.44 0.82 115.43 0.13 145.58 -0.01 143.78 1.04 82.87 0.69 81.52 0.96 101.46 0.58 97.95 0.66 134.28 0.43 133.87 
  2002     0.02       0.34       0.38       0.42       0.34   

10 1992 0.84 112.36 0.83 114.36 -0.50 138.57 -0.41 138.88 1.00 97.99 0.47 87.15 0.95 100.40 0.59 97.64 0.77 130.62 0.59 131.46 
  2002     0.01       0.23       0.60      0.40       0.25   

11 1991 0.84 113.56 0.78 115.48 -0.37 142.11 -0.30 141.07 1.03 97.79 0.48 87.63 0.90 107.40 0.47 100.78 0.79 127.03 0.70 128.76 
  2002     0.06       0.29       0.59      0.50       0.13   

12 1990 0.85 111.90 0.83 113.89 -0.34 142.53 -0.27 141.60 1.00 99.84 0.46 87.38 0.92 105.64 0.50 100.35 0.81 125.86 0.76 127.82 
  2002     0.02       0.29       0.62      0.48       0.05   

13 1989 0.86 115.50 0.73 117.04 -0.35 142.78 -0.27 141.60 1.01 101.25 0.45 87.95 0.96 101.19 0.58 97.97 0.75 126.08 0.71 128.01 
  2002     0.15       0.29       0.63      0.41       0.07   

14 1988 0.85 114.75 0.74 116.44 -0.47 140.81 -0.36 140.75 1.02 100.27 0.46 87.58 0.95 103.01 0.55 98.46 0.69 128.58 0.58 130.08 
  2002     0.12       0.25       0.62      0.45       0.17   

15 1987 0.84 114.43 0.75 116.21 -0.51 139.24 -0.41 139.60 1.01 98.69 0.47 87.48 0.93 104.67 0.51 99.64 0.68 129.06 0.56 130.47 
  2002     0.11       0.23       0.60      0.47      0.18   

16 1986 0.83 114.69 0.72 116.30 -0.56 137.45 -0.47 138.40 1.01 99.51 0.46 87.47 0.88 111.31 0.41 102.59 0.64 131.21 0.48 131.84 
  2002     0.14 0.39     0.18       0.61     0.55      0.26   

Note: In black, 5% significance level; black and underlining, 1% significance level; grey, final solution. AIC: Akaike Information Criterion. 


