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ABSTARCT: We introduce and evaluate the results of two numerical integration 
methods: the rational fraction approximation, and the composite Gauss-
Legendre quadrature. We provide computer codes in ANSI-C and Python for a 
fast and accurate computation of the cumulative distribution function (cdf) of the 
standard normal distribution and the inverse cdf of the same function. For the 
cdf we use the 5th order Gauss-Legendre quadrature which gives more accurate 
results compared to Excel and Matlab. The Inverse cdf computed using rational 
fraction approximations gives a result that is seven-decimal place accurate.. 
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1. INTRODUCTION 
 Various research projects require building software components from the ground 
up. If the integration and calls to functions in commercial software are impossible then 
unless large financial resources are committed for the development of solutions similar 
to the ones used in commercial software, code components for the project have to be 
built in-house with the explicit purpose of having a reasonable accuracy, speed, and 
low development costs. 

Numerical integration is certainly one of the most used techniques for running 
simulations and statistical analysis especially that more and more researchers in 
economics and other areas of social sciences started tackling problems that cannot be 
solved in closed form, Geweke (1995) gives examples in macroeconomics involving 
numerical integration. Popular integration methods range from very simple and 
inaccurate methods like rectangular and trapezoidal rules (Kreyszig, 1993) to more 
complex and relatively more accurate approaches like the Newton-Cotes formulae and 
Gaussian quadratures, surveyed in Press et al. (1992), and Judd (1998). 
 In the next section, we introduce and evaluate the results of two numerical 
integration methods: the rational fraction approximations, and the composite Gauss-
Legendre quadrature. In section 3, the computation of the inverse cdf using rational 
fraction approximations is evaluated. Section 4, concludes this short note. Computer 
code in Python and ANSI-C is available from the provided web URLs. 

We compare results provided by computer programs written in Python and 
ANSI-C against results provided by built-in functions in Microsoft's Excel, software 
usually used by students for quick calculations, and Mathworks' Matlab, a more 
computation oriented software used by researchers. 
 
2. NUMERICAL APPROXIMATION OF THE NORMAL STANDARD CUMULATIVE FUNCTION 
 Most commercial statistical and mathematical applications include the error 
function and its complement in their set of built-in functions, however many powerful 
programming environment such as C/C++ and Python do not recognize such functions.  
The error function is useful for most statistical and econometric purpose as it allows 
deriving the cumulative normal distribution (cdf) easily and accurately.  The error 
function and its complement are defined as (Kennedy & Gentle, 1980): 
 

( ) ( )2

0

2erf exp
x

x t dt
π

= −∫    ; 0x∀ ≥       (1) 

( ) ( )
( )

22erfc exp

1 erf
x

x t dt

x
π

∞

= −

= −

∫    ; 0x∀ <      (2) 

 



Numerical Approximation of the CDF and its Inverse 

 3

 Form (1) and (2), the exact standard normal cumulative distribution function is 
given by: 
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 Obviously, the accuracy of the results in (3) depends on the integration method 
used to evaluate the integral function in the error function and on machine round-off 
errors.  Most integration method perform rather well on regions far from the tails of the 
distribution however, as noted by Greene (2000, p.177), the tail areas of the normal 
distribution are of importance for econometricians. In what follows, we examine two 
different approximation techniques, rational fraction approximations, and Gauss-
Legendre quadrature, to illustrate the trade-off between speed and accuracy. 
 
2.1. Rational Fraction Approximations 
 Cody (1969) provides rational fraction approximations that are relatively 
accurate for the time the article was published, the error function is defined by: 
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 In (4)-(6), the rational fractions are defined by (7) where the coefficients ip  and iq  
are provided by Kennedy & Gentle (1980, p. 91-92): 
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FIGURE 1: Gauss-Legendre quadrature vs. Rational fraction approximations before 
adjustment 

 
 Using the algorithm described above with Python1 gives accurate enough results 
only for [ ]0.5,0.75x∈ − . Figure 1 compares the cdf given by Cody's algorithm and the 
Gauss-Legendre quadrature that we examine below, it is clear that Cody's algorithm 
cannot be of use if we seek accuracy. If we alter Cody's algorithm as follows we obtain a 
much better precision without affecting its speed: 
 

( ) ( )1erf x xR x=       ; 0 1.5x∀ < ≤    (8) 

( ) ( ) ( ) ( ) ( )( )2 2 2 2
1 2 3erfc exp 0.5 0.2 0.3x x R x R x R x= − + +  ; 0.46875 4.0x∀ ≤ ≤   (9) 

 
 The results of the adjusted algorithm match the overall shape of the cumulative 
distribution function however, like with Matlab, it reaches zero (resp. 1) at 8.2931x −  
(resp. 8.2931x ), which creates a problem if we need to divide by (resp. log) the 
probability. We will see next that the adjusted Cody algorithm while fast is less precise 
than the Composite Gauss-Legendre quadrature (figures 2 and 3). 
 
 

                                                 
1 The Python code available requires Numeric-22.0, the Numerical Extension to Python, written by Paul F. Dubois. 
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2.2. Composite Gauss-Legendre Quadrature 

The Gauss quadrature, consists in approximating the integral ( ) ( )
b

a

I w x f x dx= ∫  

by the summation ( )
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∑  where: :f → , ( )w x  a weight function, the [ ],ix a b∈  

are roots of Legendre polynomials of order K that are orthogonal to ( )w x , and the 'siw  
are the roots' weights. This approach has been used with various weight functions, the 
simplest and yet very accurate one is attributed to Legendre, see Press et al. (1992) for 
more details regarding the methodology and other versions of the Gauss quadrature.  
The integration method known as Gauss-Legendre quadrature is Gauss's quadrature 
with ( ) [ ]1; 1,1w x x= ∀ ∈ − , unlike Simpson's method and Newton-Cotes formulae, that 
use arbitrary and equally spaced points, the Gaussian quadrature determines precise 
points in [ ],a b  symmetrically around zero, but not necessarly equally spaced, therefore 
it is not appropriate for tabulated data. 
 Press et al. (1992), offer additional explanations and a computer routine that 
helps finding Legendre polynomials roots and their respective weights, the polynomials 
are defined by: 
 

( )0 1P x = ; ( )1P x x= ; ( ) ( )1 11 2 1k k kk P k xP kP+ −+ = + − ; 1k∀ ≥    (10) 
 

The following theorem announces a property of Gauss-Legendre quadrature, 
relating the order of the quadrature and the shape of the integrand to the precision of 
the approximation. 
 

THEOREM: The Gauss-Legendre quadrature is exact if ( )f x  is a 
polynomial of degree less than or equal to 2 1n − , where n is Legendre 
polynomial number of roots. 

 
 Recall that the Gauss-Legendre quadrature applies only over the interval [ ]1,1− , 

in Harris & Stoker (1998, p. 571), for any chosen interval [ ],a b , the integral ( )
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 With k being the order of Lagrange polynomial (i.e. number of points), the error 
expected from the Gauss-Legendre quadrature after the change of variable is (Chapra & 
Canale, 1998): 
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FIGURE 2: Absolute error of the Gauss-Legendre quadarture compared to Excel and 
Matlab 

 
 Limiting ourselves to the fifth order of Legendre polynomial, we approximate 
the normal cdf, using the code in Python; the error in (12) becomes very small and is 

approximately equal to 
( )(10)

1.23E+09
f ξ

; [ ]1,1ξ∀ ∈ − . While the algorithm gives accurate 

results it is conspicuously slow2, this requires using a faster programming language like 
ANSI-C. The advantage of the composite Gauss-Legendre quadrature is that it is precise 
and does not converge to zero or one over a large interval; in our test, we use the [-
15.0,15.0] interval with 0.25 step size.  The analysis of the error on the Gauss-Legendre 
quadarature shows that the maximum error compared to results from Matlab and Excel 

                                                 
2 On a Pentium III 450 Mhz. 
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is 1.0E-4 (figure 2), and that it is always less than the absolute error between Cody's 
adjusted algorithm and Matlab (figure 3). 
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FIGURE 3: Absolute error between Gauss-Legendre quadrature, Matlab, and Rational 
fractions approximation after adjustment 

 
3. INVERSE OF STANDARD NORMAL CUMULATIVE DISTRIBUTION 

With ( ).F  being the normal cumulative distribution function (cdf), given a 
probability p, we seek to approximate the point x such that: 
 

( ) ( )1F x p x F p−= ⇔ =      ; ( ) [ ], 0,1p x∀ ∈ ×   (13) 
 
 However, the inverse function of ( ).F  is not possible to obtain in a closed form, 
various approximation methods were suggested. We test the algorithm developed by 
Odeh & Evans (1974) and described in Kennedy & Gentle (1980, p. 93-95), the algorithm 
is based on the approximation of rational fractions derived from Taylor series. 
Compared to results given by Matlab and Microsoft Excel in table 1, the algorithm 
written in Python is seven-decimal-place accurate, which is an appropriate 
approximation considering that x∈ . 
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Table 1: Evaluation of the results of the inverse cdf approximation 
p MS-Excel Matlab Approx. 
0 #NUM! -Inf -1.00E+20 

0.1 -1.28155079437419 -1.2815515655446-1.281551560901960 
0.2 -0.84162138591637 -0.8416212335729-0.841621221601852 
0.3 -0.52440100262174 -0.5244005127080-0.524400523866581 
0.4 -0.25334657038911 -0.2533471031358-0.253347106157011 
0.5 0.00000000000000 0.0000000000000 0.000000000000000 
0.6 0.25334657038911 0.2533471031358 0.253347106157011 
0.7 0.52440100262174 0.5244005127080 0.524400523866581 
0.8 0.84162138591637 0.8416212335729 0.841621221601852 
0.9 1.28155079437419 1.2815515655446 1.281551560901960 
1 #NUM! +Inf 1.00E+20 

 
4. CONCLUSION 
 Various research problems arise when a model cannot be solved in a closed form, 
in addition to simulating the model instead of solving it, researchers can analyze the 
problem numerically. In this short note, we provide explanations and computer code to 
compute the cumulative standard normal distribution function and its inverse; we 
retain results form the 5th order composite Gauss-Legendre quadrature in ANSI-C and 
the rational fraction approximations in Python as precise and fast numerical 
approximations. The composite Gauss-Legendre quadrature may be improved upon by 
using more points for better precision, and fewer subintervals for more speed. 
Additional points and their weight can be computed (Press et al., 1992 and Vetterling et 
al., 1992) and found in various references (Judd, 1998). 
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APPENDIX 

A1. ANSI-C CODE FOR THE CDF (CDF.C) 

/*********************************************************************/ 
/* Purpose: Computes cdf of standard normal dist. using a composite  */ 
/*          fifth-order Gauss-Legendre quadrature                    */ 
/* Code by: Chokri Dridi (December, 2002)                            */ 
/*********************************************************************/ 
 
#include <math.h> 
#include <stdio.h> 
 
long double GL(long double, long double); /* integration over closed interval 
*/ 
long double cdf (long double); /* cdf function */ 
long double f(long double); /* function to integrate */ 
double p=0.; 
 
int main () 
{ 
   /* the main function to get the cdf is cdf() */ 
   /* the main() block is used just to generate values for testing */ 
   long double x=-15; 
   while (x<=15.){ 
                  p=cdf(x); 
   printf("%.17e\n",p); 
   x=x+.25; 
                 } 
 return 0; 
} 
 
/* cdf function */ 
long double cdf(long double x){ 
                               if(x>=0.){ 
                                   return (1.+GL(0,x/sqrt(2.)))/2.; 
                                  } 
                               else { 
                                 return (1.-GL(0,-x/sqrt(2.)))/2.; 
                          } 
     } 
 
/* Integration on a closed interval */ 
long double GL(long double a, long double b) 
{ 
   long double y1=0, y2=0, y3=0, y4=0, y5=0; 
 
   long double x1=-sqrt(245.+14.*sqrt(70.))/21., x2=-sqrt(245. -
14.*sqrt(70.))/21.; 
   long double x3=0, x4=-x2, x5=-x1; 
   long double w1=(322.-13.*sqrt(70.))/900., w2=(322.+13.*sqrt(70.))/900.; 
   long double w3=128./225.,w4=w2,w5=w1; 
   int n=4800; 
   long double i=0, s=0, h=(b-a)/n; 
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   for (i=0;i<=n;i++){ 
         y1=h*x1/2.+(h+2.*(a+i*h))/2.; 
                     y2=h*x2/2.+(h+2.*(a+i*h))/2.; 
                     y3=h*x3/2.+(h+2.*(a+i*h))/2.; 
                     y4=h*x4/2.+(h+2.*(a+i*h))/2.; 
                     y5=h*x5/2.+(h+2.*(a+i*h))/2.; 
                     s=s+h*(w1*f(y1)+w2*f(y2)+w3*f(y3)+w4*f(y4)+w5*f(y5))/2.; 
                     } 
 return s; 
} 
 
/* Function f, to integrate */ 
long double f(long double x){ 
     return (2./sqrt(22./7.))*exp(-pow(x,2.)); 
      } 

 
A2. PYTHON CODE FOR THE CDF USING GAUSS-LEGENDRE QUADRATURE (CDF-GL.PY) 
""" 
Purpose: Computes cdf of standard normal dist. using a composite 
         fifth-order Gauss-Legendre quadrature 
Code by: Chokri Dridi (December, 2002) 
""" 
 
from Numeric import * 
 
" cdf function " 
def cdf(x): 
    if x>=0.: 
        return (1.+GL(0,x/sqrt(2.)))/2. 
    else: 
        return (1.-GL(0,-x/sqrt(2.)))/2. 
 
" Integration on a closed interval " 
def GL(a,b): 
    y1=0. 
    y2=0. 
    y3=0. 
    y4=0. 
    y5=0. 
 
    x1=-sqrt(245.+14.*sqrt(70.))/21. 
    x2=-sqrt(245.-14.*sqrt(70.))/21. 
    x3=0. 
    x4=-x2 
    x5=-x1 
 
    w1=(322.-13.*sqrt(70.))/900. 
    w2=(322.+13.*sqrt(70.))/900. 
    w3=128./225. 
    w4=w2 
    w5=w1 
 
    n=4800 
    s=0. 
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    h=(b-a)/n 
 
    for i in range(0,n,1): 
        y1=h*x1/2.+(h+2.*(a+i*h))/2. 
        y2=h*x2/2.+(h+2.*(a+i*h))/2. 
        y3=h*x3/2.+(h+2.*(a+i*h))/2. 
        y4=h*x4/2.+(h+2.*(a+i*h))/2. 
        y5=h*x5/2.+(h+2.*(a+i*h))/2. 
        s=s+h*(w1*f(y1)+w2*f(y2)+w3*f(y3)+w4*f(y4)+w5*f(y5))/2.; 
    return s; 
 
" Function f, to integrate " 
def f(x): 
    return (2./sqrt(22./7.))*exp(-x**2.); 

 
A3. PYTHON CODE FOR THE CDF USING RATIONAL FRACTIONS APPROXIMATION (CDF.PY) 

""" 
Purpose: Algorithm to compute cdf of a Gaussian distribution 
         The cdf is 0 for all x < -8.29314441 and is 1 for all x > 8.29314441 
         Before adjustment, the accuracy of this algorithm is acceptable only 
for points -0.5<=x<=0.75 
Coded by: Chokri Dridi (December, 2002) 
Based on: Kennedy & Gentle(1980): Statistical Computing, Marcel Dekker, p. 
90-92 
""" 
 
from Numeric import * 
 
def cdf(x): 
    if x > 0.: 
        y=x 
    else: 
        y=-x 
             
    if y >= 0. and y <= 1.5: 
        p=(1.+erf(y/sqrt(2.)))/2. 
    if y > 1.5: 
        p=1.-erfc(y/sqrt(2.))/2. 
    if x > 0.: 
        return p 
    else: 
        return 1.-p 
     
def erf(x): 
    " for 0<x<=0.5 " 
    return x*R1(x) 
 
def erfc(x): 
    " for 0.46875<=x<=4. " 
    if x > 0.46875 and x < 4.: 
        return exp(-x**2.)*(0.5*R1(x**2.)+0.2*R2(x**2.)+0.3*R3(x**2.)) 
    if x >= 4.: 
        " for x>=4. " 



Numerical Approximation of the CDF and its Inverse 

 13

        return (exp(-x**2.)/x)*(1./sqrt(22./7.)+R3(x**-2.)/(x**2.)) 
 
def R1(x): 
    N=0. 
    D=0. 
    p=[2.4266795523053175e2,2.1979261618294152e1,6.9963834886191355,-
3.5609843701815385e-2] 
    q=[2.1505887586986120e2,9.1164905404514901e1,1.5082797630407787e1,1.] 
    for i in range(0,3,1): 
        N=N+p[i]*x**(2.*i) 
        D=D+q[i]*x**(2.*i) 
    return N/D 
 
def R2(x): 
    N=0. 
    D=0. 
    p=[3.004592610201616005e2,4.519189537118729422e2,3.393208167343436870e2, 
       1.529892850469404039e2,4.316222722205673530e1,7.211758250883093659, 
       5.641955174789739711e-1,-1.368648573827167067e-7] 
    q=[3.004592609569832933e2,7.909509253278980272e2, 
       9.313540948506096211e2,6.389802644656311665e2, 
      
2.775854447439876434e2,7.700015293522947295e1,1.278272731962942351e1,1.] 
    for i in range(0,7,1): 
        N=N+p[i]*x**(-2.*i) 
        D=D+q[i]*x**(-2.*i) 
    return N/D 
 
def R3(x): 
    N=0. 
    D=0. 
    p=[-2.99610707703542174e-3,-4.94730910623250734e-2, 
       -2.26956593539686930e-1,-2.78661308609647788e-1,-2.23192459734184686e-
2] 
    q=[1.06209230528467918e-2,1.91308926107829841e-
1,1.05167510706793207,1.98733201817135256,1.] 
    for i in range(0,4,1): 
        N=N+p[i]*x**(-2.*i) 
        D=D+q[i]*x**(-2.*i) 
    return N/D 

 
A4. PYTHON CODE FOR THE INVERSE CDF (INVCDF.PY) 

""" 
Purpose: Algorithm to compute inverse cdf of a Gaussian distribution 
         for values of p; 1.0E-20<p<1 
Coded by: Chokr Dridi (November, 2002) 
Based on: Kennedy & Gentle(1980): Statistical Computing, Marcel Dekker, p. 
93-95 
""" 
 
from Numeric import * 
 
def invcdf(p): 
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    if p>0.5: 
        return -inv(p) 
    else: 
        return inv(p) 
 
def inv(p): 
    xp=0. 
    lim = 1.e-20 
    p0 = -0.322232431088 
    p1 = -1.0 
    p2 = -0.342242088547 
    p3 = -0.0204231210245 
    p4 = -0.453642210148e-4 
    q0 = 0.0993484626060 
    q1 = 0.588581570495 
    q2 = 0.531103462366 
    q3 = 0.103537752850 
    q4 = 0.38560700634e-2 
    if p < lim or p == 1.: 
        return -1./lim 
    if p == 0.5: 
        return 0. 
    if p > 0.5: 
        p=1.-p 
    y = sqrt(log(1./p**2.)) 
    xp= y+((((y*p4+p3)*y+p2)*y+p1)*y+p0)/((((y*q4+q3)*y+q2)*y+q1)*y+q0) 
    if p < 0.5: 
        xp = -xp 
    return xp 

 


