
The Regional Economics Applications Laboratory (REAL) is a cooperative venture between the
University of Illinois and the Federal Reserve Bank of Chicago focusing on the development and
use of analytical models for urban and regional economic development. The purpose of the
Discussion Papers is to circulate intermediate and final results of this research among readers
within and outside REAL. The opinions and conclusions expressed in the papers are those of the
authors and do not necessarily represent those of the Federal Reserve Bank of Chicago, Federal
Reserve Board of Governors or the University of Illinois. All requests and comments should be
directed to Geoffrey J. D. Hewings, Director, Regional Economics Applications Laboratory, 607
South Matthews, Urbana, IL, 61801-3671, phone (217) 333-4740, FAX (217) 244-9339.
Web page: www.uiuc.edu/unit/real

A SHORT NOTE ON THE NUMERICAL APPROXIMATION OF THE STANDARD

NORMAL CUMULATIVE DISTRIBUTION AND ITS INVERSE

by

Chokri Dridi

REAL 03-T-7 March, 2003

Numerical Approximation of the CDF and its Inverse

 1

A SHORT NOTE ON THE NUMERICAL APPROXIMATION OF THE STANDARD

NORMAL CUMULATIVE DISTRIBUTION AND ITS INVERSE§
(March, 2003)

Chokri Dridi
Department of Agricultural and Consumer Economics, Regional Economics Applications Laboratory,
University of Illinois at Urbana-Champaign.
cdridi@uiuc.edu

ABSTARCT: We introduce and evaluate the results of two numerical integration
methods: the rational fraction approximation, and the composite Gauss-
Legendre quadrature. We provide computer codes in ANSI-C and Python for a
fast and accurate computation of the cumulative distribution function (cdf) of the
standard normal distribution and the inverse cdf of the same function. For the
cdf we use the 5th order Gauss-Legendre quadrature which gives more accurate
results compared to Excel and Matlab. The Inverse cdf computed using rational
fraction approximations gives a result that is seven-decimal place accurate..

Keywords: C/C++, Gauss-Legendre Quadarture, Normal distribution, Numerical Integration,
Rational fraction approximations, Software.
JEL Classification: C63, C88, C89

§ All copyrighted material and trademarks cited are the property of their owners. Computer code
included herewith is provided as is without any warranties.
Computer codes in Python and ANSI-C are available from:
http://www2.uiuc.edu/unit/real/d-paper/real03-t-7.zip
http://dridi.da.ru

Numerical Approximation of the CDF and its Inverse

 2

1. INTRODUCTION
 Various research projects require building software components from the ground
up. If the integration and calls to functions in commercial software are impossible then
unless large financial resources are committed for the development of solutions similar
to the ones used in commercial software, code components for the project have to be
built in-house with the explicit purpose of having a reasonable accuracy, speed, and
low development costs.

Numerical integration is certainly one of the most used techniques for running
simulations and statistical analysis especially that more and more researchers in
economics and other areas of social sciences started tackling problems that cannot be
solved in closed form, Geweke (1995) gives examples in macroeconomics involving
numerical integration. Popular integration methods range from very simple and
inaccurate methods like rectangular and trapezoidal rules (Kreyszig, 1993) to more
complex and relatively more accurate approaches like the Newton-Cotes formulae and
Gaussian quadratures, surveyed in Press et al. (1992), and Judd (1998).
 In the next section, we introduce and evaluate the results of two numerical
integration methods: the rational fraction approximations, and the composite Gauss-
Legendre quadrature. In section 3, the computation of the inverse cdf using rational
fraction approximations is evaluated. Section 4, concludes this short note. Computer
code in Python and ANSI-C is available from the provided web URLs.

We compare results provided by computer programs written in Python and
ANSI-C against results provided by built-in functions in Microsoft's Excel, software
usually used by students for quick calculations, and Mathworks' Matlab, a more
computation oriented software used by researchers.

2. NUMERICAL APPROXIMATION OF THE NORMAL STANDARD CUMULATIVE FUNCTION
 Most commercial statistical and mathematical applications include the error
function and its complement in their set of built-in functions, however many powerful
programming environment such as C/C++ and Python do not recognize such functions.
The error function is useful for most statistical and econometric purpose as it allows
deriving the cumulative normal distribution (cdf) easily and accurately. The error
function and its complement are defined as (Kennedy & Gentle, 1980):

() ()2

0

2erf exp
x

x t dt
π

= −∫ ; 0x∀ ≥ (1)

() ()
()

22erfc exp

1 erf
x

x t dt

x
π

∞

= −

= −

∫ ; 0x∀ < (2)

Numerical Approximation of the CDF and its Inverse

 3

 Form (1) and (2), the exact standard normal cumulative distribution function is
given by:

()

()

()

1 erf / 2
 ; 0

2
1 erf / 2

 ; 0
2

x
x

F x
x

x

 +
 ≥
= 

− −
<



 (3)

 Obviously, the accuracy of the results in (3) depends on the integration method
used to evaluate the integral function in the error function and on machine round-off
errors. Most integration method perform rather well on regions far from the tails of the
distribution however, as noted by Greene (2000, p.177), the tail areas of the normal
distribution are of importance for econometricians. In what follows, we examine two
different approximation techniques, rational fraction approximations, and Gauss-
Legendre quadrature, to illustrate the trade-off between speed and accuracy.

2.1. Rational Fraction Approximations
 Cody (1969) provides rational fraction approximations that are relatively
accurate for the time the article was published, the error function is defined by:

() ()1erf x xR x= ; 0 0.5x∀ < ≤ (4)

() () ()2
2erfc expx x R x= − ; 0.46875 4.0x∀ ≤ ≤ (5)

()
() ()

2
2 2

3

exp 1erfc
x

x x R x
x π

− −
−  

= + 
 

 ; 4.0x∀ ≥ (6)

 In (4)-(6), the rational fractions are defined by (7) where the coefficients ip and iq
are provided by Kennedy & Gentle (1980, p. 91-92):

()

3
2

0
1 3

2

0

i
i

i

i
i

i

p x
R x

q x

=

=

=
∑

∑
; ()

7

0
2 7

0

i
i

i

i
i

i

p x
R x

q x

=

=

=
∑

∑
; ()

4
2

0
3 4

2

0

i
i

i

i
i

i

p x
R x

q x

−

=

−

=

=
∑

∑
 (7)

Numerical Approximation of the CDF and its Inverse

 4

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
-1

5

-1
3

-1
1 -9 -7 -5 -3 -1 1 3 5 7 9 11 13 15x

Gauss-Legendre(C) cdf

Cody(Python) cdf

FIGURE 1: Gauss-Legendre quadrature vs. Rational fraction approximations before
adjustment

 Using the algorithm described above with Python1 gives accurate enough results
only for []0.5,0.75x∈ − . Figure 1 compares the cdf given by Cody's algorithm and the
Gauss-Legendre quadrature that we examine below, it is clear that Cody's algorithm
cannot be of use if we seek accuracy. If we alter Cody's algorithm as follows we obtain a
much better precision without affecting its speed:

() ()1erf x xR x= ; 0 1.5x∀ < ≤ (8)

() () () () ()()2 2 2 2
1 2 3erfc exp 0.5 0.2 0.3x x R x R x R x= − + + ; 0.46875 4.0x∀ ≤ ≤ (9)

 The results of the adjusted algorithm match the overall shape of the cumulative
distribution function however, like with Matlab, it reaches zero (resp. 1) at 8.2931x −
(resp. 8.2931x), which creates a problem if we need to divide by (resp. log) the
probability. We will see next that the adjusted Cody algorithm while fast is less precise
than the Composite Gauss-Legendre quadrature (figures 2 and 3).

1 The Python code available requires Numeric-22.0, the Numerical Extension to Python, written by Paul F. Dubois.

Numerical Approximation of the CDF and its Inverse

 5

2.2. Composite Gauss-Legendre Quadrature

The Gauss quadrature, consists in approximating the integral () ()
b

a

I w x f x dx= ∫

by the summation ()
1

K

i i
k
w f x

=
∑ where: :f → , ()w x a weight function, the [],ix a b∈

are roots of Legendre polynomials of order K that are orthogonal to ()w x , and the 'siw
are the roots' weights. This approach has been used with various weight functions, the
simplest and yet very accurate one is attributed to Legendre, see Press et al. (1992) for
more details regarding the methodology and other versions of the Gauss quadrature.
The integration method known as Gauss-Legendre quadrature is Gauss's quadrature
with () []1; 1,1w x x= ∀ ∈ − , unlike Simpson's method and Newton-Cotes formulae, that
use arbitrary and equally spaced points, the Gaussian quadrature determines precise
points in [],a b symmetrically around zero, but not necessarly equally spaced, therefore
it is not appropriate for tabulated data.
 Press et al. (1992), offer additional explanations and a computer routine that
helps finding Legendre polynomials roots and their respective weights, the polynomials
are defined by:

()0 1P x = ; ()1P x x= ; () ()1 11 2 1k k kk P k xP kP+ −+ = + − ; 1k∀ ≥ (10)

The following theorem announces a property of Gauss-Legendre quadrature,
relating the order of the quadrature and the shape of the integrand to the precision of
the approximation.

THEOREM: The Gauss-Legendre quadrature is exact if ()f x is a
polynomial of degree less than or equal to 2 1n − , where n is Legendre
polynomial number of roots.

 Recall that the Gauss-Legendre quadrature applies only over the interval []1,1− ,

in Harris & Stoker (1998, p. 571), for any chosen interval [],a b , the integral ()
b

a

f x dx∫ is

rewritten with the substitution
2 2
b a b ax z− +

= + to give:

()
1

12 2 2

b

a

b a b a b af x dx f z dz
−

− − + = + 
 ∫ ∫ (11)

Numerical Approximation of the CDF and its Inverse

 6

 With k being the order of Lagrange polynomial (i.e. number of points), the error
expected from the Gauss-Legendre quadrature after the change of variable is (Chapra &
Canale, 1998):

()
() ()

() ()
42 1

2
3

2 !

2 1 2 !

k
k

k

k
E f

k k
ξ

+

=
+   

 ; 1 1ξ− ≤ ≤ (12)

0.00E+00

2.00E-05

4.00E-05

6.00E-05

8.00E-05

1.00E-04

-1
5

-1
3

-1
1 -9 -7 -5 -3 -1 1 3 5 7 9 11 13 15

A
bs

ol
ut

e
Er

ro
r

Excel v. GL

Matlab v. GL

FIGURE 2: Absolute error of the Gauss-Legendre quadarture compared to Excel and
Matlab

 Limiting ourselves to the fifth order of Legendre polynomial, we approximate
the normal cdf, using the code in Python; the error in (12) becomes very small and is

approximately equal to
()(10)

1.23E+09
f ξ

; []1,1ξ∀ ∈ − . While the algorithm gives accurate

results it is conspicuously slow2, this requires using a faster programming language like
ANSI-C. The advantage of the composite Gauss-Legendre quadrature is that it is precise
and does not converge to zero or one over a large interval; in our test, we use the [-
15.0,15.0] interval with 0.25 step size. The analysis of the error on the Gauss-Legendre
quadarature shows that the maximum error compared to results from Matlab and Excel

2 On a Pentium III 450 Mhz.

Numerical Approximation of the CDF and its Inverse

 7

is 1.0E-4 (figure 2), and that it is always less than the absolute error between Cody's
adjusted algorithm and Matlab (figure 3).

0.00E+00

5.00E-04

1.00E-03

1.50E-03

2.00E-03

2.50E-03

-1
5

-1
3

-1
1 -9 -7 -5 -3 -1 1 3 5 7 9 11 13 15x

Gauss-Legendre v. Adj. Cody

Matlab v. Cody

FIGURE 3: Absolute error between Gauss-Legendre quadrature, Matlab, and Rational
fractions approximation after adjustment

3. INVERSE OF STANDARD NORMAL CUMULATIVE DISTRIBUTION

With ().F being the normal cumulative distribution function (cdf), given a
probability p, we seek to approximate the point x such that:

() ()1F x p x F p−= ⇔ = ; () [], 0,1p x∀ ∈ × (13)

 However, the inverse function of ().F is not possible to obtain in a closed form,
various approximation methods were suggested. We test the algorithm developed by
Odeh & Evans (1974) and described in Kennedy & Gentle (1980, p. 93-95), the algorithm
is based on the approximation of rational fractions derived from Taylor series.
Compared to results given by Matlab and Microsoft Excel in table 1, the algorithm
written in Python is seven-decimal-place accurate, which is an appropriate
approximation considering that x∈ .

Numerical Approximation of the CDF and its Inverse

 8

Table 1: Evaluation of the results of the inverse cdf approximation
p MS-Excel Matlab Approx.
0 #NUM! -Inf -1.00E+20

0.1 -1.28155079437419 -1.2815515655446-1.281551560901960
0.2 -0.84162138591637 -0.8416212335729-0.841621221601852
0.3 -0.52440100262174 -0.5244005127080-0.524400523866581
0.4 -0.25334657038911 -0.2533471031358-0.253347106157011
0.5 0.00000000000000 0.0000000000000 0.000000000000000
0.6 0.25334657038911 0.2533471031358 0.253347106157011
0.7 0.52440100262174 0.5244005127080 0.524400523866581
0.8 0.84162138591637 0.8416212335729 0.841621221601852
0.9 1.28155079437419 1.2815515655446 1.281551560901960
1 #NUM! +Inf 1.00E+20

4. CONCLUSION
 Various research problems arise when a model cannot be solved in a closed form,
in addition to simulating the model instead of solving it, researchers can analyze the
problem numerically. In this short note, we provide explanations and computer code to
compute the cumulative standard normal distribution function and its inverse; we
retain results form the 5th order composite Gauss-Legendre quadrature in ANSI-C and
the rational fraction approximations in Python as precise and fast numerical
approximations. The composite Gauss-Legendre quadrature may be improved upon by
using more points for better precision, and fewer subintervals for more speed.
Additional points and their weight can be computed (Press et al., 1992 and Vetterling et
al., 1992) and found in various references (Judd, 1998).

REFERENCES

Chapra, S. C. & R. P. Canale (1998): Numerical Methods for Engineers: With
Programming and Software Applications, 3rd ed., McGraw-Hill, Boston.
 Cody, W. J. (1969): "Rational Chebyshev Approximations for the Error function,
Mathematical Computation 23, 631-638.

Geweke, J. (1995): "Monte Carlo Simulation and Numerical Integration", Federal
Reserve Bank of Minneapolis, Research Department Staff Report 192.

Greene, W. H. (2000): Econometric Analysis, 4th ed., Prentice Hall, New Jersey.
Harris, J. W. & H. Stocker (1998): Handbook of Mathematics and Computational

Science, Springer-Verlag, New York.
Judd, K. L. (1998): Numerical Methods in Economics, MIT Press, Cambridge.

Numerical Approximation of the CDF and its Inverse

 9

Kennedy, W. J. Jr. & J. E. Gentle (1980): Statistical Computing, Marcel Dekker,
New York.

Kreyszig, E. (1993): Advanced Engineering Mathematics, 7th ed., John Wiley & Sons,
New York.

Odeh, R. E. & J. O. Evans (1974): "Algorithm AS 70: Percentage Points of the
Normal Distribution", Applied Statistics 23, 96-97.
 Press, W. H., S. A. Teukolsky, W. T. Vetterlig, & B. P. Flannery (1992): Numerical
Recipes in C: The Art of Scientific Computing, 2nd ed., Cambridge University Press,
Cambridge.
 Vetterling, W. T., S. A. Teukolsky, W. H. Press, & B. P. Flannery (1992): Numerical
Recipes: Examples Book (C), 2nd ed., Cambridge University Press, Cambridge.

Numerical Approximation of the CDF and its Inverse

 10

APPENDIX

A1. ANSI-C CODE FOR THE CDF (CDF.C)

/***/
/* Purpose: Computes cdf of standard normal dist. using a composite */
/* fifth-order Gauss-Legendre quadrature */
/* Code by: Chokri Dridi (December, 2002) */
/***/

#include <math.h>
#include <stdio.h>

long double GL(long double, long double); /* integration over closed interval
*/
long double cdf (long double); /* cdf function */
long double f(long double); /* function to integrate */
double p=0.;

int main ()
{
 /* the main function to get the cdf is cdf() */
 /* the main() block is used just to generate values for testing */
 long double x=-15;
 while (x<=15.){
 p=cdf(x);
 printf("%.17e\n",p);
 x=x+.25;
 }
 return 0;
}

/* cdf function */
long double cdf(long double x){
 if(x>=0.){
 return (1.+GL(0,x/sqrt(2.)))/2.;
 }
 else {
 return (1.-GL(0,-x/sqrt(2.)))/2.;
 }
 }

/* Integration on a closed interval */
long double GL(long double a, long double b)
{
 long double y1=0, y2=0, y3=0, y4=0, y5=0;

 long double x1=-sqrt(245.+14.*sqrt(70.))/21., x2=-sqrt(245. -
14.*sqrt(70.))/21.;
 long double x3=0, x4=-x2, x5=-x1;
 long double w1=(322.-13.*sqrt(70.))/900., w2=(322.+13.*sqrt(70.))/900.;
 long double w3=128./225.,w4=w2,w5=w1;
 int n=4800;
 long double i=0, s=0, h=(b-a)/n;

Numerical Approximation of the CDF and its Inverse

 11

 for (i=0;i<=n;i++){
 y1=h*x1/2.+(h+2.*(a+i*h))/2.;
 y2=h*x2/2.+(h+2.*(a+i*h))/2.;
 y3=h*x3/2.+(h+2.*(a+i*h))/2.;
 y4=h*x4/2.+(h+2.*(a+i*h))/2.;
 y5=h*x5/2.+(h+2.*(a+i*h))/2.;
 s=s+h*(w1*f(y1)+w2*f(y2)+w3*f(y3)+w4*f(y4)+w5*f(y5))/2.;
 }
 return s;
}

/* Function f, to integrate */
long double f(long double x){
 return (2./sqrt(22./7.))*exp(-pow(x,2.));
 }

A2. PYTHON CODE FOR THE CDF USING GAUSS-LEGENDRE QUADRATURE (CDF-GL.PY)
"""
Purpose: Computes cdf of standard normal dist. using a composite
 fifth-order Gauss-Legendre quadrature
Code by: Chokri Dridi (December, 2002)
"""

from Numeric import *

" cdf function "
def cdf(x):
 if x>=0.:
 return (1.+GL(0,x/sqrt(2.)))/2.
 else:
 return (1.-GL(0,-x/sqrt(2.)))/2.

" Integration on a closed interval "
def GL(a,b):
 y1=0.
 y2=0.
 y3=0.
 y4=0.
 y5=0.

 x1=-sqrt(245.+14.*sqrt(70.))/21.
 x2=-sqrt(245.-14.*sqrt(70.))/21.
 x3=0.
 x4=-x2
 x5=-x1

 w1=(322.-13.*sqrt(70.))/900.
 w2=(322.+13.*sqrt(70.))/900.
 w3=128./225.
 w4=w2
 w5=w1

 n=4800
 s=0.

Numerical Approximation of the CDF and its Inverse

 12

 h=(b-a)/n

 for i in range(0,n,1):
 y1=h*x1/2.+(h+2.*(a+i*h))/2.
 y2=h*x2/2.+(h+2.*(a+i*h))/2.
 y3=h*x3/2.+(h+2.*(a+i*h))/2.
 y4=h*x4/2.+(h+2.*(a+i*h))/2.
 y5=h*x5/2.+(h+2.*(a+i*h))/2.
 s=s+h*(w1*f(y1)+w2*f(y2)+w3*f(y3)+w4*f(y4)+w5*f(y5))/2.;
 return s;

" Function f, to integrate "
def f(x):
 return (2./sqrt(22./7.))*exp(-x**2.);

A3. PYTHON CODE FOR THE CDF USING RATIONAL FRACTIONS APPROXIMATION (CDF.PY)

"""
Purpose: Algorithm to compute cdf of a Gaussian distribution
 The cdf is 0 for all x < -8.29314441 and is 1 for all x > 8.29314441
 Before adjustment, the accuracy of this algorithm is acceptable only
for points -0.5<=x<=0.75
Coded by: Chokri Dridi (December, 2002)
Based on: Kennedy & Gentle(1980): Statistical Computing, Marcel Dekker, p.
90-92
"""

from Numeric import *

def cdf(x):
 if x > 0.:
 y=x
 else:
 y=-x

 if y >= 0. and y <= 1.5:
 p=(1.+erf(y/sqrt(2.)))/2.
 if y > 1.5:
 p=1.-erfc(y/sqrt(2.))/2.
 if x > 0.:
 return p
 else:
 return 1.-p

def erf(x):
 " for 0<x<=0.5 "
 return x*R1(x)

def erfc(x):
 " for 0.46875<=x<=4. "
 if x > 0.46875 and x < 4.:
 return exp(-x**2.)*(0.5*R1(x**2.)+0.2*R2(x**2.)+0.3*R3(x**2.))
 if x >= 4.:
 " for x>=4. "

Numerical Approximation of the CDF and its Inverse

 13

 return (exp(-x**2.)/x)*(1./sqrt(22./7.)+R3(x**-2.)/(x**2.))

def R1(x):
 N=0.
 D=0.
 p=[2.4266795523053175e2,2.1979261618294152e1,6.9963834886191355,-
3.5609843701815385e-2]
 q=[2.1505887586986120e2,9.1164905404514901e1,1.5082797630407787e1,1.]
 for i in range(0,3,1):
 N=N+p[i]*x**(2.*i)
 D=D+q[i]*x**(2.*i)
 return N/D

def R2(x):
 N=0.
 D=0.
 p=[3.004592610201616005e2,4.519189537118729422e2,3.393208167343436870e2,
 1.529892850469404039e2,4.316222722205673530e1,7.211758250883093659,
 5.641955174789739711e-1,-1.368648573827167067e-7]
 q=[3.004592609569832933e2,7.909509253278980272e2,
 9.313540948506096211e2,6.389802644656311665e2,

2.775854447439876434e2,7.700015293522947295e1,1.278272731962942351e1,1.]
 for i in range(0,7,1):
 N=N+p[i]*x**(-2.*i)
 D=D+q[i]*x**(-2.*i)
 return N/D

def R3(x):
 N=0.
 D=0.
 p=[-2.99610707703542174e-3,-4.94730910623250734e-2,
 -2.26956593539686930e-1,-2.78661308609647788e-1,-2.23192459734184686e-
2]
 q=[1.06209230528467918e-2,1.91308926107829841e-
1,1.05167510706793207,1.98733201817135256,1.]
 for i in range(0,4,1):
 N=N+p[i]*x**(-2.*i)
 D=D+q[i]*x**(-2.*i)
 return N/D

A4. PYTHON CODE FOR THE INVERSE CDF (INVCDF.PY)

"""
Purpose: Algorithm to compute inverse cdf of a Gaussian distribution
 for values of p; 1.0E-20<p<1
Coded by: Chokr Dridi (November, 2002)
Based on: Kennedy & Gentle(1980): Statistical Computing, Marcel Dekker, p.
93-95
"""

from Numeric import *

def invcdf(p):

Numerical Approximation of the CDF and its Inverse

 14

 if p>0.5:
 return -inv(p)
 else:
 return inv(p)

def inv(p):
 xp=0.
 lim = 1.e-20
 p0 = -0.322232431088
 p1 = -1.0
 p2 = -0.342242088547
 p3 = -0.0204231210245
 p4 = -0.453642210148e-4
 q0 = 0.0993484626060
 q1 = 0.588581570495
 q2 = 0.531103462366
 q3 = 0.103537752850
 q4 = 0.38560700634e-2
 if p < lim or p == 1.:
 return -1./lim
 if p == 0.5:
 return 0.
 if p > 0.5:
 p=1.-p
 y = sqrt(log(1./p**2.))
 xp= y+((((y*p4+p3)*y+p2)*y+p1)*y+p0)/((((y*q4+q3)*y+q2)*y+q1)*y+q0)
 if p < 0.5:
 xp = -xp
 return xp

