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Abstract

Numerous studies have pointed to the econometric problems introduced
by heterogeneity in cross-sectional data samples used to explore conver-
gence suggested by neo-classical growth models. We introduce a local con-
cept of convergence along with a Bayesian locally linear spatial estimation
method to address these problems. The method allows global and local β-
convergence to be viewed in a continuous fashion. Inference regarding global
convergence can be treated as a mixture distribution arising from local β-
convergence estimates from each region in the sample. Taking this approach
eliminates the need to specify sub-samples and regimes as well as parameter
variation schemes that have been used to model heterogeneity. We illustrate
the method using a sample of 138 European regions.

KEYWORDS: locally linear estimation, robust, outliers, heteroscedas-
tic
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1 Introduction

Since the pioneering contribution of Baumol (1986) and the more formal
contributions of Barro and Sala-I-Martin (1991, 1992, 1995) and Mankiw et
al. (1992), numerous studies have examined the β-convergence hypothesis
based on the neoclassical growth model (Solow, 1956). Numerous empirical
studies involving cross-sectional samples of countries and regions appear
in the macroeconomic and regional science literature. The prediction of
the neoclassical growth model (Solow, 1956) is that the growth rate of an
economy will be positively related to the distance that separates it from its
own steady state.

Making the simplistic assumption that economies are structurally simi-
lar, characterized by the same steady state, and differing only in their ini-
tial conditions, we should see unconditional convergence to the same steady
state. In this case, we would see low income economies grow faster than
those with high incomes and eventually catch up in the long run. Under the
more realistic scenario, where economies have different steady states that
are conditional on identifiable structural differences, it should be possible
to draw econometric inferences regarding conditional convergence. This re-
quires that we appropriately condition on structural differences that give
rise to differences in steady states. In empirical practice, it is difficult to
measure and model structural differences, and in theory heterogenous struc-
tures suggest heterogeneity in steady states as well as the structural factors
on which we need to condition our econometric models (Durlauf, 2000, 2001;
Brock and Durlauf, 2001).

Econometric models rely on a cross-section of countries or regions, using
the average growth rate of per capita GDP (y) over a given time period
as the dependent variable. These models rely on an explanatory variables
matrix, X = [ι y0] consisting of a constant (ι) as well as the initial level of
log per capita GDP (y0), and the associated parameter vector γ = [α β]′ as
shown in (1).

y = Xγ + ε (1)
ε ∼ N(0, σ2

εIn)

Most often, least-squares estimation is used to determine the sign and sig-
nificance of the parameter β, for the case of unconditional β-convergence.
For conditional β-convergence, a matrix of explanatory variables that pur-
port to measure and control for structural differences is introduced in (1).

1



Typical variables suggested by Mankiw et al. (1992) in an augmented Solow
growth model were: human and physical capital, saving rates and popula-
tion growth rates. Additional variables to control for structural differences
might include: the ratio of public consumption to GDP, the ratio of do-
mestic investment to GDP, terms of trade, the fertility rate, the degree of
political instability etc. (see Barro and Sala-I-Martin, 1995). In fact, more
than 90 such variables have been included in cross-country regressions us-
ing international data sets in the empirical growth literature as surveyed by
Durlauf and Quah (1999).

Heterogeneity in the structure of economies suggest that conditioning
attempts that rely on smoothly varying variables to describe economic struc-
ture might fail to achieve the appropriate conditioning needed to produce
valid inferences regarding conditional β-convergence. A theoretical motiva-
tion for heterogeneity can be found in endogenous growth theory (Azariadis
and Drazen, 1990) as well as the neoclassical model with heterogenous struc-
ture (Galor, 1996).

Econometric methods that attempt to directly accommodate heterogene-
ity offer an alternative approach to the problem of estimation and inference.
Partitioning the cross-sectional sample into regimes based on income levels
or other structural characteristics is one approach to modeling heterogeneity
(Desdoigts, 1999; Durlauf and Johnson, 1995). Allowing for explicit param-
eter variation over the sample represents another (Durlauf, Kourtellos and
Minkin, 2001). In both cases, model specification issues beyond those in-
volving which explanatory variables to include in the model arise. For the
case of a multiple regime model, decisions must be made regarding how to
partition the cross-sectional sample, and for varying parameter models, a
specification for this variation must be set forth.

We propose:

1. use of a spatial autoregressive lag structure in place of a matrix of
explanatory variables,

2. a locally linear Bayesian spatial model to accommodate heterogeneity.

With regard to 1), the spatial lag structure plays the role of a lagged
dependent variable in time-series models, accounting for variation in the
dependent variable arising from latent or unobservable variables. In the case
of our spatial lag, these latent factors are correlated among cross-sectional
observations located nearby in geographic space. A prior belief that latent
spatial/geographical factors can explain a large part of observed structural
variation in economies eliminates many decisions that arise when devising
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econometric strategies for modeling heterogenous phenomena. As support
for this prior, we note that empirical studies have found evidence of spatial
autocorrelation in the residuals of traditional models (Conley and Ligon,
2002; Fingleton, 1999; Le Gallo, Ertur and Baumont, 2003; Moreno and
Trehan, 1997). In addition, theoretical models from economic geography
point to factors such as technology diffusion, factor mobility and trade which
all have a strong geographic dimension which might interact with growth
processes as in (Kubo, 1995 or Martin and Ottaviano, 1999, 2001). Another
motivation for inclusion of the spatial lag of the dependent variable is that
this variable highlights a spatial spillover effect, where the growth rate in
each region is affected by those of neighboring regions after conditioning on
initial per capita GDP levels.

Regarding 2), our locally linear spatial model partitions the cross-sectional
sample observations by treating each location along with surrounding loca-
tions as a sub-sample. This reduces the need to make arbitrary decisions
regarding how to partition the sample observations, but allows for variation
in the parameter estimates across all observations. Our proposed method
presumes that similarities in legal and social institutions as well as culture
and language might act to create spatially local uniformity in economic
structures, leading to similar spatial locality in rates of convergence. We
think it useful to define the concept of local convergence, which we use to
refer to a situation where rates of convergence in economic growth rates are
similar for observations located at nearby points in space. In other words,
there exists spatial clustering in the magnitudes of the β-convergence param-
eter estimates. It should be noted that our locally linear spatial estimation
method does not impose apriori similar rates of convergence for spatially
neighboring observations. Rather, we estimate β-convergence parameters
for each region/observation in the sample and then examine these estimates
in an effort to assess whether there is empirical support for our concept of
local convergence. This represents an important difference between our ap-
proach and a spatially varying parameter estimation scheme that imposes
spatial similarity on the estimates. For an example of the latter approach
see LeSage (2003).

Another benefit of the locally linear model we propose is that expanding
the sub-sample size around each locality results in a limiting model where
the sub-sample size expands to include all observations in the cross-sectional
sample. This produces locally linear econometric estimates that vary sys-
tematically as the sub-sample size increases towards the global estimates one
would achieve using the entire sample. It allows a systematic assessment of
the mapping between the locally linear estimates that accommodate hetero-
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geneity and estimates based on the global sample reflecting homogeneity.
This allows us to assess empirical evidence in support of local convergence
in light of the more traditional global convergence approach.

Section 2 describes global versus local spatial autoregressive estimation,
and compares our spatial autoregressive locally linear estimation approach
to more traditional locally linear methods based on non-spatial least-squares.
Bayesian Markov Chain Monte Carlo (MCMC) estimation of the model is
taken up in section 3 and the model is applied to a sample of 138 European
regions in section 4.

2 Estimation and inference regarding convergence

A spatial autoregressive model that can be used to produce regression esti-
mates in the presence of spatial dependence in the cross-section of observa-
tions representing regions or countries is described in section 2.1. Section 2.2
extends this model to allow for a sequence of locally linear parameter es-
timates associated with each observation (country or region) in the data
sample. The relationship between our proposed approach and other locally
linear modeling methods is taken up in section 2.3.

2.1 Global spatial autoregressive estimates

To accommodate spatial dependence in the growth rates of regions or coun-
tries reflected in the cross-sectional dependent variable y, we might produce
estimates using the spatial autoregressive model (SAR) shown in (2). This
model includes what is known as a spatial lag of the dependent variable,
(see Anselin, 1988).

y = ρWy + Xγ + ε (2)

This model conventionally assumes that ε ∼ N(0, σ2In), but we will have
more to say about this later. The vector y, matrix X and parameter vector
γ are as described for the model in (1).

The nxn matrix W is a row-standardized spatial weight matrix. While a
number of ways exist to specify W , a common specification sets Wij > 0 for
observations j = 1 . . . n sufficiently close (as measured by some metric) to
observation i. For example, we might rely on observations that are spatially
contiguous to observation i, those that have borders in common, or we might
use the five nearest neighbors measured by distance from the centroids of
each location. By construction, the main diagonal of W is set to zero to
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preclude an observation from directly predicting itself. Row-standardization
of the matrix W scales each element in the matrix so that the rows sum
to unity, producing an explanatory variable Wy that reflects the average
of growth rates from neighboring observations. The scalar parameter ρ
measures the influence of the variable, Wy on y.

As in the case of time-series, use of this spatial lag should account for
latent or unobservable influences that take on a spatial character. This
approach ameliorates the need to specify structural economic explanatory
variables, where data availability is constrained. One could of course include
such variables in the matrix X in (2) along with an associated parameter
vector if this information were available.

This model can be estimated using maximum likelihood methods (see
Anselin, 1988) assuming that there is a homogeneous relationship between
y and X across the spatial sample of observations. The estimated scalar
parameter ρ̂ could be used to test for the presence of significant spatial de-
pendence in the sample of cross-sectional growth rates. If this parameter is
not significantly different from zero, the model in (2) collapses to the sim-
ple least-squares model in (1). The scalar parameter estimate β̂ contained
in the parameter vector γ could be used to produce an inference regard-
ing convergence that we label global convergence. Inferences based on this
parameter represent a conclusion regarding convergence or non-convergence
that averages over sample data evidence from the entire sample of countries
or regions.

As an illustration, we provide estimates for the model in (1) based on
least-squares alongside maximum likelihood estimates for the SAR model in
(2) in Table 1. These estimates were based on a sample of growth rates in
real GDP for 138 European regions over the period from 1980 to 1995 (see
section 4.1 and the data appendix for a detailed description of the sample
data). The SAR model used a spatial weight matrix W based on using
the ten nearest neighbors to each region in the sample. Results based on
a spatial weight matrices formed using eight to twelve nearest neighbors to
each region were similar to those reported in the table.

From the homoscedastic model estimates reported in the table, we see
strong evidence of spatial dependence as indicated by the estimate of ρ̂ =
0.75, that is significant at the 99 percent confidence level. The table also
illustrates a difference between the magnitude of the least-squares β and
that from the SAR model, pointing to differing rates of convergence. The
least-squares estimate suggests more rapid convergence than that from the
spatial model.

Another issue that plagues growth regressions is non-constant variance
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across the sample of countries or regions. Table 1 also presents estimates for
the least-squares and SAR model based on a Bayesian heteroscedastic lin-
ear model proposed by Geweke (1993) and a spatial autoregressive variant of
this model suggested by LeSage (1997). These models allow the disturbances
to take the form ε ∼ N(0, σ2V ), where V is a diagonal matrix containing
variance scalars v1, v2, . . . , vn, estimated using Markov Chain Monte Carlo
(MCMC) methods. Prior information regarding the variance scalars vi takes
the form of a set of n independent, identically distributed, χ2(r)/r distribu-
tions, where r represents the single parameter of the χ2 distribution. This
allows us to estimate the additional n non-zero variance scaling parameters
vi by adding only a single parameter r, to the model.

The specifics regarding the prior assigned to the vi terms can be mo-
tivated by considering that the mean equals unity and the variance of the
prior is 2/r. This implies that as r becomes very large, the terms vi will all
approach unity, resulting in the non-zero variance scalars taking the form
V = IN , the traditional assumption of constant variance across space. On
the other hand, small values of r lead to a skewed distribution permitting
large values of vi that deviate greatly from the prior mean of unity. The role
of these large vi values is to accommodate outliers or observations contain-
ing large variances by down-weighting these observations. In the context
of spatial modeling, outliers or aberrant observations arise due to “enclave
effects”, where a particular region exhibits divergent behavior from nearby
areas. Geweke (1993) shows that this approach to modeling the disturbances
is equivalent to a model that assumes a Student−t distribution for the er-
rors. We note that this type of distribution has frequently been used to deal
with sample data containing outliers, (e.g., Lange, Little and Taylor (1989)).
In practice, one can either assign an informative prior for the parameter r
based on the exponential distribution centered on a small value, or treat
this as a hyperparameter in the model, set to a small value, say 4 to 7. The
estimates in table 1 are based on r = 4.

These robust estimates suggest lower values for the convergence param-
eter β in both the least-squares and SAR models. It should be noted that
the probabilities associated with these estimates represent Bayesian p−levels
suggested by Gelman, Carlin, Stern and Rubin (1995) as an analogue to con-
ventional marginal probabilities used for t−statistics for models estimated
using MCMC methods. These point to a β estimate for the heteroscedastic
SAR model that is not significantly different from zero at the 0.01 level of
significance, pointing to a lack of convergence.

To summarize this discussion, inferences regarding convergence based
on what we choose to label global estimates that presume homogeneity in
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Table 1: Least-squares versus spatial model estimates

Homoscedastic model estimates
Variable OLS OLS t-marginal SAR SAR t-marginal

probability probability
Constant 0.1294 0.0000 0.0580 0.0009
1980 log-level -0.0078 0.0000 -0.0048 0.0033
Spatial lag, Wy 0.7502 0.0000

Bayesian Heteroscedastic model estimates
Variable OLS OLS p-level SAR SAR p-level
Constant 0.0994 0.0000 0.0416 0.0016
1980 log-level -0.0045 0.0058 -0.0031 0.0164
Spatial lag, Wy 0.7681 0.0000

the relationship across the sample of regions or countries are likely to be
sensitive to outliers and to influences such as spatial dependence that have
the potential to bias least-squares estimates. For this reason, we propose
a locally linear spatial autoregressive model described in the next section.
This model is capable of producing inferences regarding our concept of local
convergence.

2.2 Locally linear spatial autoregressive estimates

To accommodate both spatial dependence and heterogeneity, we produce
estimates using n− models, where n represents the number of cross-sectional
sample observations, using the locally linear spatial autoregressive model in
(3). This homoscedastic model was proposed by Pace and LeSage (2002)
and labelled spatial autoregressive local estimation (SALE).

U(i)y = ρiU(i)Wy + U(i)Xγi + U(i)ε (3)

Where U(i) represent an nxn diagonal matrix containing distance-based
weights for observation i that assign weights of one to the m nearest neigh-
bors to observation i and weights of zero to all other observations. This
results in the product U(i)y representing an mx1 sub-sample of observed
GDP growth rates associated with the m observations nearest in location
(using Euclidean distance) to observation i. Similarly, the product U(i)X
extracts a sub-sample of explanatory variable information based on m near-
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est neighbors. The SALE model assumes εi ∼ N(0, σ2
i U(i)In), but we will

have more to say about this later.
The scalar parameter ρi measures the influence of the variable, U(i)Wy

on U(i)y. We note that as m → n, U(i) → In and these estimates approach
the global estimates based on all n observations that would arise from the
SAR model in (2).

We extend the SALE model to accommodate non-constant variances,
by introducing εi ∼ N(0, σ2

i U(i)V ), V = diag(v1, v2, . . . , vn). We label
this model BSALE, Bayesian spatial autoregressive local estimation. The
specifics of this extension are described in section 3.

2.3 Comparison with other spatially local estimation meth-
ods

McMillen (1996) and McMillen and McDonald (1997) introduced a form
of spatial non-parametric locally linear weighted regression (LWR) which
Brunsdon, Fotheringham and Charlton (1996) term geographically weighted
regressions (GWR). This approach to modelling spatial dependence relies on
separate models estimated using a sub-sample of the data based on obser-
vations nearby each observation. The motivation for this approach is that if
spatial dependence arises due to inadequately modeled spatial heterogene-
ity, LWR can potentially eliminate this problem. These models often rely on
the estimated parameters to detect systematic variation in the relationship
being examined over space.

This type of model is shown in (4), where M(i) represent an nxn diagonal
matrix containing distance-based weights for observation i that reflect the
distance between observation i and all other observations.

M(i)1/2y = M(i)1/2Xγi + M(i)1/2εi (4)

The subscript i on γi indicates that this kx1 parameter vector is associ-
ated with region i. The LWR model produces n such vectors of parameter
estimates, one for each region/observation. These estimates are calculated
using:

γ̂i = (X ′M(i)X)−1(X ′M(i)y) (5)

A number of alternative approaches have been proposed to construct the
distance-based weights for each observation i contained in the vector on the
diagonal of M(i). As an example, McMillen suggests a tri-cube weighting
function:
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diag(M(i)) = (1− (dj
i/dm

i )3)3 I(dj
i < dm

i ) (6)

Where dj
i represents the distance between observation j and observation i,

dm
i represents the distance between the mth nearest neighbor and observa-

tion i, and I() is an indicator function that equals one when the condition is
true and zero otherwise. In practice, the number of nearest neighbors used
(often referred to as the ‘bandwidth’) is determined with a cross-validation
procedure, typically a prediction criterion based on excluding a single ob-
servation.

Pace and LeSage (2002) point out that LWR methods exhibit a trade-
off between increasing the sample size to produce less volatile estimates
that contain increasing spatial dependence. Selecting a smaller sample size
reduces the spatial dependence, but at the cost of increased parameter vari-
ability that impedes detection of systematic patterns of parameter variation
over space. They argue that the SALE method eliminates this problem
by extending the LWR approach to include a spatial lag of the dependent
variable, which accommodates spatial autocorrelation likely to arise as the
sub-sample size is increased. They argue that inclusion of the spatial au-
toregressive term in the model results in improves prediction and stability
of the parameter estimates, decreasing the sensitivity of performance to the
bandwidth that is typically observed.

There is a cost associated with introducing the spatial lag since the SALE
model requires maximum likelihood methods, whereas the LWR model re-
lies on least-squares. However, Pace and LeSage (2002) present an efficient
recursive approach for maximum likelihood estimation of the n spatial au-
toregressive models for problems involving large numbers of observations
and illustrate the method for a sample of 3,107 US counties. Most cross-
sectional samples of countries or regions used in the empirical convergence
literature involve considerably smaller samples.

These smaller samples give rise to another problem with local estimation
methods, pointed out by LeSage (2003). Aberrant observations or outliers
arising from spatial enclave effects or shifts in regime can exert a large impact
on the locally linear estimates. Since these sub-sample estimates may be
based on a small number of observations, and the sample data observations
are re-used when estimates are produced for each point in space, a single
outlier can contaminate estimates covering large areas or sub-regions of the
spatial sample. This may create an artifact that resembles a regime shift
or spatial clustering pattern in the estimates for β (or in β as well as the
parameters on control variables in the conditional β−convergence model).
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Intuitively, a single outlier will re-appear in sub-samples constructed using
neighboring locations needed to produce estimates for each point in the
spatial sample. This allows a single outlier to produce a contagion effect
that can impact estimates for an entire region of the sample.

In the next section, we set forth the BSALE model that can accommo-
date outliers by down-weighting these observations.

3 Bayesian spatial autoregressive local estimation

For each spatial autoregressive model based on a sub-sample of size m, we
specify our model as shown in (7), where the nxn diagonal matrix U(i)
assigns a weight of unity to the m nearest neighbors to observation i, and
zero weight to all other observations.

U(i)y = ρU(i)Wy + U(i)Xγ + U(i)ε (7)
U(i)ε ∼ N(0, σ2U(i)V ), V = diag(v1, v2, . . . , vn)

The mxm matrix W represents a spatial weight matrix with row-sums
normalized to unity. The weight matrix used in our empirical application
was constructed using the six nearest neighbors to each region in the sample.
Estimation results based on a first-order contiguity weighting matrix were
also examined. The number of neighbors ranged from a low of just 3 first-
order contiguous neighbors up to 10 contiguous neighbors with an average
around 6 neighbors. Estimates from the model based on a first-order con-
tiguity weighting matrix were nearly identical to those reported here based
on the six nearest neighbors. We note that using 10 nearest neighbors in
the formulation of W places a constraint on the smallest local sample size
that can plausibly be used during estimation. It seems advisable to assign
non-zero weights using the matrix U(i) for at least 20 or 30 observations to
provide an adequate amount of sample data on which to base estimates of
ρ, β, V and σ. This in part motivated our choice of 6 nearest neighbors, and
the restriction to 20 observations as the smallest sample size we consider.

This locally linear Bayesian variant of the basic spatial autoregressive
model introduces a set of variance scalars (v1, v2, . . . , vn), that represent un-
known parameters that need to be estimated. This allows us to assume
ε ∼ N(0, σ2U(i)V ) , where V = diag(v1, v2, . . . , vn), but we note that only
m of the variance scalars vi take on non-zero values. As noted, this approach
to robust modeling in the face of non-constant variance or outliers was in-
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troduced by Geweke (1993) for a least-squares model, and LeSage (1997) for
the spatial autoregressive model.

Equation (8) provides a formal statement of the prior distributions used
in the model.

π(γ) ∼ N(c, T ) (8)
π(r/vi) ∼ IIDχ2(r)
π(1/σ2) ∼ Γ(d, ν)

π(ρ) ∼ U [−1, 1]

Prior distributions assigned to the parameters α, β, σ and ρ in the model
take the form of diffuse prior distributions. Given the small sub-sample sizes
that we will be working with, informative prior information is likely to exert
a substantial impact on the posterior distributions for these parameters.
Given our interest in drawing inferences regarding β based on the sample
data, diffuse prior assignments seem reasonable for these parameters in our
application. This can be accomplished for the parameters γ by setting the
vector of the prior means c to zero, and the prior variance-covariance T =
Ik · (1e + 10). A diffuse prior on σ is associated with settings of: d = ν = 0.
We rely on a uniform prior for ρ ranging from -1 to 1.

Prior information regarding the variance scalars vi takes the form of a
set of n independent, identically distributed, χ2(r)/r distributions, where
r represents the single parameter of the χ2 distribution. This allows us
to estimate the additional m non-zero variance scaling parameters vi by
adding only a single parameter r, to the model. We use the same value for
the hyperparameter r for all sub-samples during estimation.

The other aspect of our Bayesian SALE model is selection or setting
of the sub-sample size m. As already noted, variation in this will create a
host of parameter outcomes that are: highly volatile over the spatial sam-
ple for small values of m; and nearly constant taking on values near the
global estimates as m → n. This issue typically arises with locally linear
non-parametric estimation methods, and cross-validation methods are often
used to select an optimal sub-sample size. A plausible range for sub-sample
size consideration might be (1/4)n < m < (3/4)n, so that sub-sample sizes
are at least 1/4 the number of observations but less than 3/4 of the en-
tire sample. Of course, these ranges could be changed depending on the
size of the sample data. A related problem is that inference regarding the
parameters is conditional on the sub-sample size selected.
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One advantage of the SALE method is that a mapping of the parameter
estimates is provided that allows an examination of the sensitivity of infer-
ences with regard to choice of sub-sample size. We can examine the sequence
of estimates for sub-sample sizes ranging from m = (1/4)n to m = (3/4)m
in an effort to see whether inferences would differ as the sub-sample size
varies. This is the approach we take here.

A cross-validation approach in this setting might involve use of the es-
timates for observation i based on a sub-sample size m to predict “fringe
observations”, those that border the sub-sample of m observations. This
would represent a spatial analogue to one-step-ahead predictions in time-
series. A Bayesian solution to the problem of sub-sample size selection
would be to mix over estimates based on alternative sub-sample sizes to pro-
duce posterior estimates that reflect uncertainty with regard to the choice of
sub-sample size. Unfortunately, this requires determination of weights that
would be used in mixing over the estimates from alternative sub-sample
sizes. These weights should be based on posterior probabilities associated
with models arising from the various sub-sample sizes, but this would require
integration over sub-sample sizes, which would be treated as a parameter in
the model. This would lead to computationally expensive calculations.

We demonstrate that inference regarding convergence versus non-convergence
is not sensitive to sub-sample sizes ranging from 40 to 100 observations,
which roughly corresponds to (1/4)n and (3/4)n.

3.1 Estimation of the model

The parameters γ, V, σ and the spatial lag parameter ρ in the heteroscedastic
SAR model can be estimated by drawing sequentially from the conditional
distributions of these parameters, a process known as “alternating condi-
tional sampling”, or Markov Chain Monte Carlo sampling.

To illustrate how this works, let θ = (θ1, θ2), represent a parameter
vector and p(θ) denote the prior, with L(θ|y, X,W ) denoting the likelihood.
This results in a posterior distribution p(θ|D) = c · p(θ)L(θ|y, X,W ), with c
a normalizing constant. Consider the case where p(θ|D) is difficult to work
with, but a partition of the parameters into two sets θ1, θ2 is easier to handle.
Given an initial estimate for θ1, which we label θ̂1, suppose we could easily
estimate θ2 conditional on θ1 using p(θ2|D, θ̂1). Denote the estimate, θ̂2

derived by using the posterior mean or mode of p(θ2|D, θ̂1). Assume further
that we are now able to easily construct a new estimate of θ1 based on the
conditional distribution p(θ1|D, θ̂2). This new estimate for θ1 can be used to
construct another value for θ2, and so on. On each pass through the sequence
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of sampling from the two conditional distributions for θ1, θ2, we collect the
parameter draws which are used to construct a joint posterior distribution
for the parameters in our model. Gelfand and Smith (1990) demonstrate
that sampling from the sequence of complete conditional distributions for
all parameters in the model produces a set of estimates that converge in
the limit to the true (joint) posterior distribution of the parameters. That
is, despite the use of conditional distributions in our sampling scheme, a
large sample of the draws can be used to produce valid posterior inferences
regarding the joint posterior mean and moments of the parameters.

To implement this estimation method, we need to determine the condi-
tional distributions for each parameter in our BSALE model. The condi-
tional distribution for γ follows from the insight that given ρ, σ, U(i), V and
m, we can rely on results from LeSage (1997), and define A = (In− ρW ) to
arrive at:

p(γ|ρ, σ, V,m) ∼ N(ḡ, σ2G) (9)
ḡ = (X ′U(i)V −1X + σ2T−1)−1(X ′U(i)V −1Ay + σ2T−1c)
G = σ2(X ′U(i)V −1X + σ2T−1)−1

We see that the conditional for γ is a multivariate normal distribution from
which it is easy to sample a vector γ.

The conditional distribution for σ given the other parameters, takes the
form (see Gelman, Carlin, Stern and Rubin, 1995):

p(σ2|γ, ρ, V, m) ∝ (σ2)−(m
2

+d+1)exp
[
− e′U(i)V −1e +

2ν

2σ2

]
(10)

e = (In − ρW )y −Xγ

which is proportional to an inverse gamma distribution with parameters
(m/2) + d and e′U(i)V −1e + 2ν. Again, this would be an easy distribution
from which to sample a scalar value for σ.

Geweke (1993) shows that the conditional distribution of V given the
other parameters is proportional to a chi-square density with r + 1 degrees
of freedom. Specifically, we can express the conditional posterior of each vi

as:

p(
e2
i + r

vi
|β, ρ, σ2, v−i,m) ∼ χ2(r + 1) (11)
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where ei = U(i)e, with e as defined in (10), and v−i = (v1, . . . , vi−1, vi+1, . . . , vn)
for each i. Again, this represents a known distribution from which it is easy
to construct a scalar draw.

Finally, the conditional posterior distribution of ρ takes the form shown
in (12).

p(ρ|β, σ, V,m) ∝ |A|(s2)−(m−k)/2 (12)
s2 = (AU(i)y −Xb)′U(i)V −1(AU(i)y −Xb)/(m− k)

A problem arises here in that this distribution is not one for which estab-
lished algorithms exist to produce random draws. We can however rely on
univariate numerical integration of the conditional posterior of ρ. Applying
a log transformation to the conditional posterior in (12), and the Barry and
Pace (1999) Monte Carlo estimator for the log determinant in (12) over a
grid of j = 1, . . . , q values for the parameter ρ ranging from -1 to 1, we can
express s(ρ)2 as a vector over the grid of ρ values. This takes the form:




s(ρ1)2

s(ρ2)2
...

s(ρq)2



∝




Ln|In − ρ1W |
Ln|In − ρ2W |

...
Ln|In − ρqW |



− (m− k)/2




Ln(φ(ρ1))
Ln(φ(ρ2))

...
Ln(φ(ρq))




(13)

where φ(ρj) = e′oU(i)eo − 2ρje
′
dU(i)eo + ρ2

je
′
dU(i)ed, j = 1, . . . , q and we use

ỹ, X̃ to denote the products
√

V −1y,
√

V −1X, resulting in:

eo = ỹ − X̃γo

ed = Wỹ − X̃γd

γo = (X ′V −1X)−1X ′V −1y

γd = (X ′V −1X)−1X ′V −1Wy (14)

This produces a simple numerical integration problem that can be solved
rapidly using Simpson’s rule. We arrive at the entire conditional distribution
using this numerical integration approach, and then produce a draw from
this distribution using “inversion”. Keep in mind that on the next pass
through the MCMC sampler, we need to integrate the conditional posterior
again. This is because the distribution is conditional on the changing values
for the other parameters vi, β, σ in the model, which obviously produce an
altered expression for s2 in the conditional distribution for ρ.
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3.2 The MCMC sampler

By way of summary, an MCMC estimation scheme involves starting with
arbitrary initial values for the parameters which we denote γ0, σ0, V 0, ρ0,
for a fixed value of the sub-sample size m and observation i. We then
sample sequentially from the following set of conditional distributions for
the parameters in our model for sub-sample size m and observation i.

1. p(γ|σ0, V 0, ρ0,m), which is a multinormal distribution with mean and
variance defined in (9). This updated value for the parameter vector
γ we label γ1.

2. p(σ|γ1, V 0, ρ0,m), which is chi-squared distributed with m+2d degrees
of freedom as shown in (10). Note that we rely on the updated value of
the parameter vector γ = γ1 when evaluating this conditional density.
We label the updated parameter σ = σ1 and note that we will continue
to employ the updated values of previously sampled parameters when
evaluating the next conditional densities in the sequence.

3. p(vi|γ1, σ1, v−i, ρ
0,m) which can be obtained from the chi-squared dis-

tribution shown in (11). Note that this draw can be accomplished as
a vector, providing greater speed.

4. p(ρ|γ1, σ1, V 1), which we sample using the numerical integration ap-
proach set forth above.

We now return to step 1) employing the updated parameter values in
place of the initial values γ0, σ0, V 0, ρ0. On each pass through the sequence
we collect the parameter draws which are used to construct a joint posterior
distribution for the parameters in the model associated with sub-sample size
m and observation i. The average of these draws for the parameters γ, σ, ρ, V
represent the mean of the posterior distributions for the model associated
with observation i and sub-sample size m.

We repeat this process for models based on varying the sub-sample size
m to produce estimates that vary as a function of the sub-sample size.

4 Convergence of European regions

We illustrate the BSALE method using a sample of 138 European regions
and data covering the period 1980 to 1995. These local estimation results
and inferences regarding convergence are compared to the global estimates
and inferences presented in section 2.1.
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4.1 The sample data

Data limitations remain a serious problem in the European regional con-
text. Harmonized and reliable data allowing consistent regional compar-
isons are scarce, in particular for the beginning of the time period under
study. There is clearly a lack of appropriate or easily accessible data that
could be used to measure and control for structural differences considered
by conditional β−convergence models. This represents a departure from the
cross-country studies of Barro and Sala-I-Martin (1995) or Mankiw, Romer
and Weil (1992) which rely on an extensive international data set.

We use the log of European regional per capita GDP over the period
1980-1995 expressed in ECUs, the former European Currency Unit, replaced
by the Euro in 1999. The data are extracted from the EUROSTAT-REGIO
database, which is widely used in empirical studies of European regions, see
for example López-Bazo et al. (1999), Neven and Gouyette (1995), Quah
(1996) among others. Our sample includes 138 regions in 11 European
countries over the 1980-1995 period: Belgium (BE:11), Denmark (DK:1),
France (FR:21), Germany (DE:30), Greece (GR:13), Luxembourg (LU:1),
Italy (IT:20), the Netherlands (NL:9), Portugal (PT:5) and Spain (ES:16) in
NUTS2 level and the United Kingdom (UK:11) in NUTS1 level (see the data
appendix for more details). NUTS is the French acronym for Nomenclature
of Territorial Units for Statitistics used by Eurostat. In this nomenclature
NUTS1 refers to European Community Regions and NUTS2 to Basic Ad-
ministrative Units.

It is worth mentioning that our sample is far more consistent and encom-
passes more regions than the one initially used by Barro and Sala-I-Martin
(1991, 73 regions; 1995, 90 regions) and Sala-I-Martin (1996a, 73 regions;
1996b, 90 regions) where different sources and different regional breakdowns
where mixed. For example, for the sample of 90 regions used by Barro and
Sala-I-Martin (1995) mixed: i) GDP data collected by Molle (1980) for the
pre-1970 period, ii) Eurostat data for the recent period and iii) personal in-
come data from Banco de Bilbao for Spanish regions. Button and Pentecost
(1995) also report these problems. Moreover the smaller 73 region data set is
largely confined to prosperous European regions belonging to Western Ger-
many, France, United-Kingdom, Belgium, Denmark, Netherlands and Italy,
excluding Spanish, Portuguese and Greek regions, which are less prosper-
ous. This may result in a selection bias problem raised by DeLong (1988).
Armstrong (1995) attempted to overcome these problems by expanding the
original Barro and Sala-I-Martin (1991) 73 region data set to less prosperous
southern regions using a more consistent sample of 85 regions.
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Despite improvements in our sample, we are aware of shortcomings in the
database we use, especially concerning the adequacy of the regional break-
down adopted. The regional breakdown might give rise to a form of the
ecological fallacy problem (King, 1997; Anselin and Cho, 2000) or “modifi-
able areal unit problem” well known to geographers (Openshaw and Taylor,
1979, Arbia, 1989). The choice of the NUTS2 level as our spatial scale of
analysis may appear arbitrary and may have some impact on our inferences.
Use of NUTS2 regions may reflect a spatial scale that is not fine enough
to adequately capture unobserved heterogeneity, leading to the ecological
fallacy problems noted above. On the other hand, the finer spatial scale of
NUTS2 versus NUTS1 could lead to spurious spatial autocorrelation that
could arise as an artifact of slicing homogenous zones. Despite these the-
oretical considerations regarding the appropriate spatial scale, we are con-
strained in our empirical illustration by data availability. In addition to the
availability issue, we note that the NUTS2 level has been used in European
regional development policy considerations. Since reform in 1989, NUTS2 is
the level at which eligibility for Objective 1 Structural Funds is determined
(see: The European regions: Sixth periodic report on the socio-economic sit-
uation in the regions of the European Union, European Commission, 1999).
By way of conclusion, we simply note that our empirical results regarding
convergence among regions should be interpreted with caution due to these
issues arising from spatial scale considerations.

4.2 Estimation results

The first point we illustrate using our estimation results regards the sta-
tistical significance of the spatial dependence parameter ρ. Locally linear
non-parametric models attempt to eliminate this dependence by relying on
small sample sizes, where spatial dependence would be small or non-existent.
We present kernel density estimates of the distribution of 138 estimates for
ρ from the SALE model based on sub-sample sizes of m = 20, 30, 40 in
Figure 1. Even in the case of the small sub-sample size of m = 20 shown
in Figure 1 we see a multi-modal distribution of the 138 estimates for ρ,
suggesting a great deal of variation in spatial dependence across the sam-
ple of European regions. The mean of these estimates is −0.07, near zero,
lending support to the notion that locally-linear methods based on small
sub-samples can overcome spatial dependence. However, there are a num-
ber of regions where the spatial dependence estimate appears to take on
large (positive or negative) values, indicating the presence of spatial depen-
dence between elements of the y vector. This would have an adverse impact
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on the estimates of β for a number of regions in the 138 region sample. The
impact of non-zero ρ values in the spatial autoregressive model is similar to
that arising from simultaneity, resulting in biased and inconsistent estimates
of β (see Anselin, 1988).
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Figure 1: Distribution of ρ estimates for m = 20, 30, 40

The distribution of ρ estimates for sub-sample sizes of m = 30 and
m = 40 shown in Figure 1 more clearly point to larger positive modal
values, suggesting that spatial dependence increases as the sub-sample size
increases, as we would expect. In these cases, the majority of estimates for
β would be subject to the biasing impact of spatial dependence among the
y values. The mean of 138 estimates for ρ based on sub-sample sizes 30
to 80 ranged from 0.35 for the small sub-sample size of 30, up to 0.71 for
the large sub-sample size of 80. In this context, it should be noted that the
“fringe observation” cross-validation criterion mentioned earlier pointed to
an optimal sub-sample size around 80 observations.

There is also variation in the amount of spatial dependence as we move
across countries, shown in Figure 2, where individual estimates for ρ are
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Figure 2: Estimates for ρ based on m = 40, 80

shown. Observations associated with countries are delimited by vertical
lines in the figure, and estimates based on a sub-sample size of 40 and 80
are shown in the figure. It should be clear that spatial dependence of a
sufficiently large magnitude to create bias in least-squares estimates arises
even for the relatively small sub-sample size of 40.

These results suggest inclusion of the spatial lag of the dependent vari-
able serves two useful purposes. First, it acts as a parsimonious proxy for
unobserved latent spatial influences that are typically modelled by adding
numerous explanatory variables to the model. Second, it allows increasing
the sub-sample size used to produce locally linear estimates, which can sta-
bilize the estimates and allow identification of spatial patterns or regimes.
This can be done without introducing bias in the estimates for β that typ-
ically arises when larger sub-samples are used in local spatial estimation
methods such as GWR.

Estimates for the convergence parameter β are shown in Figure 3, where
again observations associated with countries are delimited by vertical lines
in the figure. A set of three estimates based on sub-sample sizes of 60, 70 and
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Figure 3: Estimates for β based on m = 60, 70, 80

80 are presented in the figure. Country-level differences are apparent in the
figure, where we see estimates change abruptly as we move from one country
to another. In addition to distinct variation in the convergence parameter
between countries, there is also substantial variation between regions within
a country in some cases.

Samples of draws generated during MCMC sampling can be used to
produce estimates for the standard deviations of the parameter β, and asso-
ciated confidence intervals. It should be noted that the estimates suffer from
sample re-use as in the case of other locally linear non-parametric estima-
tion methods. Sample observations from neighbors are re-used to produce
estimates for each location, and in the case of neighboring observations the
amount of sample overlap would be substantial. This inhibits our ability to
interpret these measures of dispersion in estimate outcomes in a strict statis-
tical sense. Nonetheless, we provide a graphical depiction of the β estimates
based on a sub-sample size of 80 observations along with two standard de-
viation intervals in Figure 4. We simply note that convergence indicated by
negative and significant values of β is likely for the EU regions in Spain and

20



0 20 40 60 80 100 120 140
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

Observations

E
st

im
at

ed
 
β

 v
al

u
es

BE DE

DK   >

ES

FR GR IT

LU   >

NL PT UK

m=80

upper

lower

Figure 4: Upper and lower confidence intervals for β based on m = 80

Portugal as well as some regions in France. For observations associated with
these regions, the estimates for the convergence parameter β are negative,
and the upper confidence interval lies below zero, suggestive of significant
negative values for this parameter.

Individual β and ρ estimates for the 138 regions based on a sample size
of 80 are presented in Table 2 along with standard deviations constructed
using the MCMC draws. Regions where the estimate for β is negative and
more than two standard deviations away from zero are flagged in the table
with the symbol ?. These parameter estimates would be consistent with
convergence. For the case of the parameter ρ, all values were more than two
standard deviations away from zero, so no symbols were added to the table.
There are no cases where the positive coefficient values for β are more than
two standard deviations away from zero, indicating divergence of the region
from surrounding regions.

It is interesting to note that in Table 2, only 31 of the 138 locally linear
spatial autoregressive estimates for β are negative and significant (more than
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two standard deviations from zero), consistent with an inference of conver-
gence. These regions tend to be spatially clustered in Spain, Portugal and
southern France as shown in Figure 5. Use of global least-squares and SAR
model estimates such as those presented in Table 1 of section 2.1, do not
allow for this type of distinction. The β parameter estimates based on the
four global models would lead to an inference of global convergence in three
of the four cases presented in Table 1, the exception being the heteroscedas-
tic SAR model. The concept of local convergence in conjunction with the
BSALE model proposed here provide a great deal of additional information
regarding the nature of convergence in growth rates across a spatial sample
of observations. The BSALE estimates suggest that convergence is taking
place for some regions in our sample, but not others.

non-converging
conver ging

Figure 5: Converging and non-converging regions

5 Conclusions

We argue that problems created for conventional convergence regressions by
shifts in regime as one moves across the spatial regions can be accommodated
by a Bayesian spatial autoregressive locally linear estimation approach. Ad-
ditional problems that arise due to non-constant variance and outliers can
also be ameliorated using this approach. We define a local convergence
concept and provide an estimation method that we label BSALE to draw
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inferences regarding this notion of convergence. We demonstrate that infer-
ences regarding convergence differ when using the BSALE methodology and
more traditional SAR models based on the entire sample.

One aspect of this methodology is reliance on a spatial autoregressive
model to account for latent unobservable factors that influence economic
growth, but are not typically accounted for in β−convergence models. We
argue that as in the case of lagged dependent variables in time-series mod-
elling, spatial lags can filter adverse impacts arising from excluded variables.
Another key facet of our BSALE approach is the use of a robust Bayesian
variant of the spatial autoregressive local estimation (SALE) model set forth
in Pace and LeSage (2002). This type of locally linear sub-sample estimation
produces estimates that converge to robust Bayesian spatial autoregressive
estimates based on the entire sample as the size of the sub-sample increases
towards use of all observations. This allows practitioners to avoid use of a
single bandwidth or sub-sample size on which they will ultimately proceed
to draw inferences. The continuous nature of the mapping between locally
linear and global estimates allows one to consider the role of sub-sample size
on the resulting conclusions regarding convergence. For our sample of 138
European regions we find that conclusions regarding convergence are similar
for sub-sample sizes varying from roughly one-fourth to three-fourths of the
sample size.

There are several areas where the approach set forth here could be ex-
tended or enhanced. These methods could be extended to the case of a
spatial Durbin model, where spatial lags of the initial levels are included as
an explanatory variable in the model. Spatial error models where the dis-
turbances are modelled as following a spatial autoregressive process would
be another extension of the approach. A place for enhancement would be
a formal method for identifying the optimal sub-sample size to use in the
Bayesian SALE estimation method.
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6 Data Appendix

The data are extracted from the EUROSTAT-REGIO database. This database
is widely used in empirical papers dealing with European regions (e.g. Neven
and Gouyette 1995; Quah 1996b; López-Bazo et al. 1999, Beine and Jean-
Pierre, 2000). Eurostat is the Statistical Office of the European Commu-
nities. Its task is to provide the European Union with statistics at a re-
gional level that enable comparisons between countries and regions. These
statistics are used by the European Commission and other European Insti-
tutions to design, implement and analyze Community policies. The REGIO
database is the official source of harmonized annual data at the regional
level throughout the 1980-1995 period for the European Union.

In this paper, we use Eurostat 1995 nomenclature of statistical territorial
units, which is referred to as NUTS (a French acronym used by Eurostat
for Nomenclature of Territorial Units for Statistics). The aim is to pro-
vide a single uniform breakdown of territorial units for the production of
regional statistics for the European Union. In this nomenclature, NUTS1
refers to European Community Regions while NUTS2 defines Basic Admin-
istrative Units. For practical reasons having to do with data availability
and implementation of regional policies, this nomenclature is based primar-
ily on the institutional divisions currently in force in the Member States
following “normative criteria”. Eurostat defines these criteria as following:
“normative regions are the expression of political will; their limits are fixed
according to the tasks allocated to the territorial communities. according to
the size of population necessary to carry out these tasks efficiently and eco-
nomically, and according to historical and cultural factors” (Eurostat 1999,
p. 7). It excludes territorial units specific to certain fields of activity or
functional units (Cheshire and Carbonaro 1995) in favor of regional units
of a general nature. The regional breakdown adopted by Eurostat appears
therefore as one of the major shortcomings of the Regio database.

We use the series E2GDP based on ESA79 and expressed in ECUs per in-
habitant over the 1980-1995 period for 138 regions in 11 European countries
as follows: United Kingdom (UK:11) at NUTS1 level and Belgium (BE:11),
Denmark (DK:1), France (FR:21), Germany (DE:30), Greece (GR:13), Lux-
embourg (LU:1), Italy (IT:20), Netherlands (NL:9), Portugal (PT:5) and
Spain (ES:16) at NUTS2 level. For the United Kingdom NUTS1 is used
because there is no official counterpart to NUTS2 units which are drawn up
only for the European Commission use as groups of counties. This explains
data non-availability at NUTS2 level throughout the period for this country.
Luxembourg and Denmark may be considered as NUTS2 regions according
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to Eurostat. Our preference for NUTS2 level rather than NUTS1 or NUTS3
levels, when data is available, is based on European regional development
policy considerations: this is the level at which eligibility under Objective 1
of Structural Funds is determined (European Commission 1999). Our em-
pirical results are certainly conditioned by this choice and could be affected
by missing regions and different levels of aggregation. They must therefore
be interpreted with caution.

We exclude Groningen in the Netherlands from the sample because of
anomalies related to North Sea Oil revenues, which substantially increase its
per capita GDP (as in Neven and Gouyette 1995). We also exclude the Ca-
nary Islands and Ceuta y Mellila, which are geographically isolated. Corse,
Austria, Finland, Ireland and Sweden are excluded because data is not avail-
able for the whole 1980-1995 period in the EUROSTAT-REGIO database.
Berlin and East Germany are also excluded for well-known historical and
political reasons.

Some authors use per capita GDP expressed in purchasing power stan-
dards (PPS), i.e. adjusted for purchasing power parity (e.g. Armstrong
1995; López-Bazo et al. 1999), whereas we restrict our analysis to per
capita GDP expressed in ECUs. The choice between per capita GDP ex-
pressed in ECUs or in PPS is rather complicated. Indeed, for international
and interregional comparisons, per capita GDP values expressed in national
currencies should be converted to a common currency (ECU for European
countries). This conversion is carried out by means of official exchange rates
but, for different reasons, these exchange rates don’t mirror the real purchas-
ing power of a given currency in the economic area of a country and their
use does not provide a reliable indication of the volume of goods and services
produced and consumed in different countries. To overcome this drawback,
an exchange rate based on purchasing power parity is often used. Values
obtained this way are called purchasing power standards (PPS). However,
it is worth stressing that the construction of regional accounts in purchasing
power parity that are comparable across space and time is very complicated
and can raise serious problems. First, this conversion should be based on
regional purchasing power parity but, due to data non-availability, this ad-
justment is calculated on the basis of national price levels and so does not
take into account regional differences in prices, which can be significant, par-
ticularly when there are wide variations in income between regions. Second,
per capita GDP expressed in PPS can change in one economy relative to
another not only because of a difference in the rate of GDP growth in real
terms but also because of a change in relative price levels. This complicates
the analysis of changes over time insofar as a relative increase in per capita
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GDP, which arises from a reduction in the relative price level or from a
re-estimation of the PPS adjustment might have slightly different implica-
tions than one which results from a relative growth in real GDP. Third, as
pointed out by Vanhoudt et al. (2000) data obtained using this method are
primarily designed to compare countries within the same year. Using these
data in time-series comparisons could be problematic yielding “implausible
results for annual average growth rates. This is often overlooked when ana-
lyzing determinants of economic growth in empirical exercises” (p.83). This
problem does not seem to be taken into account, and the fact that the defi-
nition of PPP has changed with every enlargement of the EU is also ignored.
Results obtained for growth rates using PPS should therefore be interpreted
with caution.

Another problem concerning the use of per capita GDP for assessing re-
gional disparities is that commuter flows affect comparisons between regions.
In the case of city regions, surplus commuters ensure that production activ-
ity in these regions is higher than it would be with resident workers only.
As a result, per capita GDP in these regions is generally overestimated,
and that of the regions in which the commuters live is generally underesti-
mated. However, we note that: this effect is significant only in a few cases
(Brussels, Luxembourg, Hamburg, Darmstadt, Bremen, Ile-de-France), poor
regions are generally not affected by this problem, and these commuter flows
are globally negligible at the NUTS2 level of regional breakdown.
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Table 2: Estimates for β and ρ

OBS NUTS β σβ ρ σρ

1 be1 0.1265 0.3442 0.7673 0.0844
2 be21 0.0703 0.3283 0.7586 0.0818
3 be22 -0.0872 0.3123 0.7738 0.0789
4 be23 0.0039 0.3123 0.7603 0.0790
5 be24 0.0535 0.3251 0.7639 0.0811
6 be25 -0.0982 0.3067 0.7834 0.0762
7 be31 0.0070 0.3463 0.7605 0.0825
8 be32 -0.0606 0.3128 0.7704 0.0820
9 be33 -0.1795 0.3113 0.7614 0.0771
10 be34 -0.2197 0.3159 0.7881 0.0807
11 be35 -0.1197 0.3138 0.7745 0.0808
12 de11 -0.2825 0.2580 0.7235 0.0868
13 de12 -0.2864 0.2880 0.7233 0.0876
14 de13 -0.3147 0.2854 0.7211 0.0888
15 de14 -0.3066 0.2359 0.7171 0.0884
16 de21 -0.1317 0.2162 0.6610 0.1019
17 de22 -0.0809 0.2101 0.6621 0.0983
18 de23 -0.0605 0.2115 0.6452 0.0965
19 de24 -0.2011 0.2269 0.6834 0.0916
20 de25 -0.2221 0.2264 0.7110 0.0909
21 de26 -0.2637 0.2644 0.7006 0.0944
22 de27 -0.2195 0.2256 0.6976 0.0919
23 de5 -0.0696 0.3149 0.7506 0.0849
24 de6 -0.1511 0.3350 0.7412 0.0840
25 de71 -0.2574 0.3051 0.7147 0.0922
26 de72 -0.1204 0.3085 0.7033 0.0884
27 de73 -0.1966 0.3019 0.7137 0.0932
28 de91 -0.2483 0.2851 0.7458 0.0904
29 de92 -0.1110 0.3104 0.7221 0.0896
30 de93 -0.0381 0.3118 0.7522 0.0875
31 de94 -0.1534 0.3047 0.7928 0.0789
32 dea1 -0.1742 0.3297 0.7470 0.0806
33 dea2 -0.2194 0.3139 0.7528 0.0837
34 dea3 -0.1463 0.3112 0.7405 0.0795
35 dea4 -0.1064 0.3103 0.7356 0.0895
36 dea5 -0.1339 0.3171 0.7326 0.0850
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OBS NUTS β σβ ρ σρ

37 deb1 -0.2030 0.3111 0.7494 0.0842
38 deb2 -0.2660 0.3123 0.7439 0.0847
39 deb3 -0.1337 0.3013 0.7211 0.0844
40 dec -0.2652 0.3078 0.7345 0.0850
41 def -0.0324 0.3050 0.7382 0.0837
42 dk -0.1784 0.3062 0.7973 0.0738
43 es11? -0.9529 0.2284 0.6055 0.0934
44 es12? -0.8981 0.2397 0.5882 0.0956
45 es13? -0.8828 0.2433 0.5757 0.0972
46 es21? -0.8472 0.2327 0.5866 0.0955
47 es22? -0.8067 0.2416 0.5926 0.1046
48 es23? -0.8367 0.2404 0.5903 0.1020
49 es24? -0.8080 0.2440 0.5880 0.1064
50 es3? -0.8296 0.2419 0.5913 0.1001
51 es41? -0.8826 0.2362 0.5826 0.0971
52 es42? -0.9053 0.2492 0.5776 0.1048
53 es43? -0.9778 0.2402 0.6198 0.1005
54 es51? -0.8109 0.2332 0.5509 0.1085
55 es52? -0.9414 0.2539 0.5366 0.1139
56 es53? -0.7892 0.2383 0.5178 0.1102
57 es61? -0.9604 0.2413 0.5983 0.0963
58 es62? -0.9545 0.2606 0.5344 0.1144
59 fr1 -0.4370 0.2779 0.7797 0.0784
60 fr21 -0.2209 0.3377 0.7213 0.0928
61 fr22 -0.1429 0.3156 0.7448 0.0878
62 fr23 -0.2334 0.2778 0.7045 0.0907
63 fr24 -0.2298 0.2587 0.6597 0.0919
64 fr25 -0.2424 0.2165 0.6067 0.0929
65 fr26? -0.6516 0.3209 0.7180 0.0993
66 fr3 -0.0549 0.3161 0.7810 0.0842
67 fr41 -0.2754 0.3073 0.7473 0.0839
68 fr42 -0.2344 0.3008 0.7195 0.0869
69 fr43 -0.3660 0.2929 0.7037 0.0900
70 fr51? -0.5063 0.2321 0.5635 0.1035
71 fr52? -0.8784 0.2505 0.5367 0.1021
72 fr53? -0.6159 0.2475 0.5418 0.1074
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OBS NUTS β σβ ρ σρ

73 fr61? -0.7290 0.2477 0.5638 0.1026
74 fr62? -0.4777 0.2150 0.5003 0.1194
75 fr63 -0.3155 0.2185 0.6185 0.0978
76 fr71? -0.6536 0.2949 0.6966 0.0999
77 fr72? -0.5235 0.2458 0.6629 0.1052
78 fr81 -0.3972 0.2135 0.5754 0.1105
79 fr82 -0.4783 0.2419 0.7016 0.0884
80 gr11 -0.1155 0.1817 0.6062 0.1079
81 gr12 -0.1547 0.1858 0.5879 0.1064
82 gr13 -0.1812 0.1857 0.6188 0.1065
83 gr14 -0.1617 0.1866 0.6220 0.1083
84 gr21 -0.2089 0.1844 0.5850 0.1114
85 gr22 -0.1501 0.1749 0.6405 0.1024
86 gr23 -0.1873 0.1858 0.6210 0.1102
87 gr24 -0.0759 0.1725 0.6008 0.1103
88 gr25 -0.1908 0.1757 0.6208 0.1074
89 gr3 -0.1886 0.1964 0.5836 0.1154
90 gr41 -0.0904 0.1919 0.5845 0.1097
91 gr42 -0.1135 0.1829 0.5821 0.1079
92 gr43 -0.1481 0.1723 0.6428 0.1060
93 it11 -0.4943 0.2629 0.6825 0.0961
94 it12 -0.5118 0.2725 0.7027 0.0926
95 it13 -0.1665 0.2006 0.6727 0.0970
96 it2 -0.0976 0.2019 0.7187 0.0873
97 it31 -0.0756 0.1800 0.6922 0.0909
98 it32 -0.0678 0.1812 0.7005 0.0925
99 it33 -0.0264 0.1749 0.6883 0.0919
100 it4 -0.0933 0.1903 0.6614 0.1012
101 it51 -0.0981 0.1916 0.6748 0.0990
102 it52 -0.0947 0.1589 0.6820 0.0978
103 it53 -0.0565 0.1714 0.6754 0.1023
104 it6 -0.0952 0.1680 0.6704 0.0973
105 it71 -0.0951 0.1769 0.6139 0.1048
106 it72 -0.1186 0.1912 0.5818 0.1137
107 it8 -0.2119 0.1814 0.6346 0.1078
108 it91 -0.2007 0.1810 0.6226 0.1045
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OBS NUTS β σβ ρ σρ

109 it92 -0.2078 0.1823 0.6307 0.1079
110 it93 -0.2123 0.1838 0.6351 0.1073
111 ita -0.3251 0.1786 0.6641 0.0969
112 itb -0.1837 0.1904 0.6836 0.0939
113 lu -0.2880 0.2983 0.8040 0.0752
114 nl12 -0.0172 0.3131 0.7954 0.0742
115 nl13 -0.1470 0.2980 0.7908 0.0706
116 nl2 -0.1272 0.3108 0.7866 0.0755
117 nl31 -0.0648 0.3039 0.7947 0.0720
118 nl32 0.0327 0.3051 0.7826 0.0732
119 nl33 0.0414 0.3229 0.7659 0.0795
120 nl34 -0.0369 0.3167 0.7799 0.0827
121 nl41 -0.0431 0.3182 0.7821 0.0772
122 nl42 -0.1558 0.3109 0.7819 0.0816
123 pt11? -0.7989 0.2427 0.5621 0.0998
124 pt12? -0.8297 0.2405 0.5388 0.1013
125 pt13? -0.8889 0.2471 0.5222 0.1051
126 pt14? -0.8789 0.2725 0.5446 0.1086
127 pt15? -0.8882 0.2457 0.5369 0.1047
128 uk1 -0.0351 0.2141 0.6803 0.0871
129 uk2 -0.1025 0.2502 0.7078 0.0856
130 uk3 -0.1085 0.2554 0.6858 0.0928
131 uk4 -0.2146 0.3115 0.7332 0.0855
132 uk5 -0.1517 0.2779 0.6553 0.0957
133 uk6? -0.7126 0.2870 0.5241 0.1071
134 uk7 -0.1408 0.2375 0.6389 0.0942
135 uk8 -0.0041 0.2123 0.6752 0.0877
136 uk9 -0.5423 0.3013 0.5389 0.1107
137 uka -0.0211 0.2172 0.6869 0.0847
138 ukb? -0.7504 0.2520 0.6019 0.0990
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