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Abstract: This paper deals with the analytical and graphical representation of the 
bifurcations appearing from the adjustment dynamics of a 2-player Cournot duopoly, 
proposed by Puu (1997).  We establish admissibility conditions on the initial state of the 
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1. INTRODUCTION. 

 Cournot (1838) understood and clearly stated that the quantity competition in a non-

cooperating duopoly leads to a quantity outcome that is stable and that any firm deviating from 

it, by self-interest alone, will be brought back to equilibrium in a sequence of adjustments.  

While not using the same exact terms, Cournot also stated in reference to the stability of the 

outcome that the duopoly equilibrium is an attractor while the cooperative monopoly equilibrium 

point is a repeller therefore, while most favorable to producers, it is unstable without self-

enforcement or an enforcing mechanism.  Friedman (1983) considers a myopic duopoly where 

each firm maximizes its profit in a given period given what its rival(s) produced in the previous 

period, obviously such a model can be criticized on many points but for us one salient failure, 

mentioned by the author, is the inability of firms to adjust their outputs to the other firms' output 

level.  In this paper, we consider an adjustment mechanism where a firm's output in period 1t +  
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is the output in period t adjusted by a fraction of the output excess/shortage in the previous 

period (Puu, 1997). 

 This paper aims to analytically describe the critical bifurcation curves, while other 

authors did recognize the bifurcation effects using a trial and error approach (Agiza, 1998), here 

we derive the exact forms of bifurcation based on preset values of coordinates of Cournot 

equilibrium chosen as bifurcation parameters and visualize the dynamics by moving the 

equilibrium point along a given path.  In the next section, we describe the adjustment dynamics 

and characterize its stability, in the third section we study the bifurcation emerging from the 

adjustment dynamics, in section four we represent bifurcation patterns of interest and put 

conditions on admissible initial points, and section five concludes the paper. 

2. MODEL 

 Puu (1997, Ch.5) introduced an iterative process, which leads two oligopolies to the Cournot-

Nash equilibrium via the following iterative process: 
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where ( ),t tx y  are the supplies at time t of two competitors in a duopoly; a and b are their 

constant marginal costs, and λ  and µ  are the adjustment speeds such that { }0 , 1λ µ≤ ≤ .  The 

firms produce an undifferentiated product sold at a market price 1P
x y

=
+

.  The fixed point 

( ),x y  of this iteration dynamics satisfies the system of algebraic equations: 
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with a non-zero solution: 
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x b
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which is the Cournot-Nash equilibrium. 

 The detailed analysis of the structure of the domain of attraction of this equilibrium and the 

bifurcations of its adjustment dynamics in (1) can be described analytically as follows (Sonis, 

2000, pp. 340-341).  The Jacobi approximation matrix for the dynamics in (1) is: 
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At the Cournot equilibrium, this matrix becomes 
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Therefore, 
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It is well known (Hsu, 1997) that the domain of attraction of every 2-dimensional discrete 

dynamics has a form: 

1 det 1TrJ J− ± < <       (7) 

It is easy to see that for the adjustment dynamics in (2) we always have: 

1 detTrJ J− ± <       (8) 

Hence the domain of attraction of the Cournot equilibrium is defined by the inequality det J < 1, 

which gives: 
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Let us introduce the ratio of the marginal costs; 
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and let 

1 1
λ µ
+ = Λ       (12) 

Obviously we have 0k >  and 2Λ ≥ .  Then from (10)-(12), the domain of attraction of the 

Cournot equilibrium is: 
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or 

k k2 2 2 1 1 0− − + <Λb g      (14) 

This implies that the following inequality represents the domain of attraction for the Cournot 

equilibrium: 

k k k1 2< <       (15) 

where k k1 2 0, >   are the (positive) roots of (14) when transformed into an equality: 

k1 2 2 1 2 1, = − −Λ Λ Λb g b g∓       (16) 

Obviously, these roots are reciprocal, since we can use the reciprocal ratio k b
a

=   . 

 The character of bifurcations in these roots are the same and is defined by the value of α  

(Sonis, 2000, p. 341): 

α λ µ= = − + >TrJ 2 0b g      (17) 
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If the quantity Ω =
1

2 2π
αarccos is a rational number p

q
 then the adjustment dynamics will be q-

periodic; if Ω  is irrational, then the adjustment dynamics will be quasi-periodic. 

Few examples are of special interest; if the adjustments ( ),λ µ  are unitary, i.e. α = 0  then we 

have a 4-period cycle starting the Feigenbaun double-periodic way to chaos; if 1λ µ+ =  then 

1α =  and we have 6-period cycle bifurcations.  Moreover, from (17) α > 0, the duopoly 

adjustment cannot have 2-periodic bifurcation (with α = −2 ) and 3-period bifurcation (with 

α = −1), but it can have the 5-period cycle corresponding to α λ µ= + =0 61803 138157. , . i.e.,   

(see figure 1 for the 5-periodic cycle), etc. 

3. MOVEMENT OF COURNOT EQUILIBRIUM AND CORRESPONDING BIFURCATIONS OF 

ADJUSTMENT DYNAMICS IN THE SPACE OF ORBITS 

 In formulae (3), if the marginal costs a and b are changing, i.e. the point (a,b) is moving in 

the space of marginal costs, then the Cournot equilibrium (x,y) also changes its position in the 

space of orbits ( ),t tx y .  For example, if the point (a,b) is moving on the straight line b sa r= +  

in the space of marginal costs then the Cournot equilibrium (x,y) is moving on the curve 

y rx s x y= + +b g2  in the space of orbits. 

It is possible to see, that equation (3) implies that 

a y
x y

b x
x y

=
+

=
+b g b g2 2;        (18) 

 This means that we can consider the coordinates of the Cournot equilibrium as playing the 

role of bifurcation parameters.  In such a way we are replacing the set of bifurcation parameters 

( ), ; ,a b λ µ  by a new set ( ), ; ,x y λ µ .  Fixing the speeds of change ( ),λ µ  we can visualize in the 

same space of orbits the domain of attraction of Cournot equilibrium, its movement, and the 

bifurcations of actual adjustment dynamics.  This is convenient because the boundaries of the 

domain of attraction in the space of orbits depend on the parameters ( ),λ µ  alone. 

Indeed, after the substitution of (18) into (15), the analytical description of the domain of 

attraction obtains the form: 
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( ) ( )(2 1) 2 1 (2 1) 2 1y
x

Λ − − Λ Λ − < < Λ − + Λ Λ −    (19) 

Geometrically, this inequality defines the angle in the space of orbits with the vertex in the origin 

of coordinates and the sides defined by the straight lines: 
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Since 2Λ ≥  then 
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    (21) 

This means that the domain of stability of Cournot equilibrium in the space of orbits always 

includes the angle (see figure 1): 

3 2 2 3 2 2y
x

− ≤ ≤ +      (22) 

 

<< insert figure 1 here >> 

 

If the Cournot equilibrium lies on the boundaries (20) of this domain the adjustment dynamics 

undergoing the bifurcation are defined by the values of Λ = +λ µ  (see eq. (17)); if the quantity 

Ω
Λ

=
−1

2
2

2π
arccos  is a rational number p

q
 then the adjustment dynamics will be q-periodic; if 

Ω  is irrational, then the adjustment dynamics will be quasi-periodic. 

4. VISUALIZATION OF BIFURCATIONS OF ADJUSTMENT DYNAMICS 

 The transfer from the space of marginal costs to the space of orbits, together with the 

immovability of the boundaries of the domain of attraction in the space of orbits when the 

Cournot equlibrium is changed with constant speeds of change provides the possibility to 

visualize all admissible qualitative features of the behavior of the adjustment dynamics, for the 
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equilibrium near and on the boundaries of the attraction domain.  The movements of the 

equilibrium in the space of orbits on the segments of straight lines and the crossing of the 

boundaries of the attraction domain reveal the plethora of possible ways from stability, 

periodicity, Arnold horns and quasi-periodicity to chaos. 

4.1. Admissible initial states of the adjustment dynamics 

 The Cournot-Nash equilibrium is found by solving a system of reaction functions 

determining the output of one firms as a function of the output of the other firm, such reaction 

functions must lead to non-negative levels of output, this translates into having; 
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and provides the condition on the initial point ( )0 0
1 1, 0, 0,x y
b a

   ∈ ×      
. 

 We call the initial state ( )0 0,x y  admissible if the adjustment dynamics at each step t 

produces the non-negative states ( ),t tx y .  The conditions of non-negativity can be presented in 

the following form: 
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Proof 1. Conditions (21) imply that  
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Therefore,  
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Lemma 2. If  
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is admissible and the adjustment dynamics (1) converges to the attractor point 
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For each t, the state ( ),t tx y  is non-negative, i.e. each initial state satisfying (31) is admissible.  

Condition (30) geometrically represents the angle 1 4
4

x
y

≤ ≤  which lies inside the domain of 

attraction defined by (20) of the adjustment dynamics and the fixed point 

x b
a b

y a
a b

=
+

=
+b g b g2 2;  is the attractor point for this dynamics. 

Remark.  If condition (25) does not hold, then for visualization of the adjustment dynamics one 

should chose the admissible initial state of the form, for example, 0 0;x x y yε ε= + = +  with a 

suitable small 0ε > . 

4.2. Visualization of adjustment dynamics 

 The numerical procedure of the description of such phenomena includes the construction of 

spatial bifurcation diagrams in which the bifurcation parameter is the equilibrium itself.  The 

construction of two-dimensional bifurcation diagram, i.e. the visualization of the movements of 

equilibria in the space of orbits on the segments of straight lines can be accomplished in the 

following way.  Let us fix the speeds of change ( ),λ µ  and the same initial state ( �, �)x y for 

adjustment dynamics (1) at all bifurcation steps.  Further let us chose the number of bifurcation 

steps S and the segment of the straight line of movement of equilibrium 

( ) ( ) ( ) ( )( 0 , 0 ), ( , )x y x S y S   .  It is possible to parameterize the segment of the straight line 

between ( ) ( )( 0 , 0 )x y  and ( ) ( )( , )x S y S  as: 

( ) ( ) ( )

( ) ( ) ( )

0 1 ,

0 1 ,

 0,  1,...,

j jx j x x S
S S
j jy j y y S
S S

j S

 = − + 
 
 = − + 
 

=

    (32) 

where j is a bifurcation parameter and S is a number of bifurcation steps. 

Formulae (17) helps to construct the marginal costs a j b jb g b g,  for each bifurcation step. 

Choosing these marginal costs we can calculate with the help of (1) the orbit of corresponding 

adjustment dynamics.  The two-dimensional bifurcation diagram is the presentation of the "tails"  
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( ), 1,...t P P T= +  of orbits the adjustment dynamics ( ),t tx y  on all bifurcation steps. 

The usual one-dimensional bifurcation diagram can be obtained from (32) by presenting for each 

( ), 1,...t P P T= +  the diagram of change of coordinates tx  and ty  separately against the 

bifurcation parameter j.  The important conclusion is that these steps provide the visualization of 

adjustment dynamics with a preset of qualitative properties. 

Let us start the visualization of the adjustment dynamics with the case of transfer from the 

attraction to 4-periodic cycle (see figure 2).  The 4-periodic cycle corresponds to the maximal 

speeds of adjustment λ µ= = 1.  If the Cournot equilibrium is crossing over the critical straight 

lines y
x
= ±3 2 2  the adjustment dynamics undergoes the bifurcation from the attraction to 

Cournot equilibrium to the attractive 4-periodic cycle.  

 

<< insert figure 2 here >> 

 

The 5-perido bifurcation diagrams is provided in figure 1 and the following bifurcation diagrams 

represent the adjustment dynamics, corresponding to the 9-period dynamics (figure 3). 

 

<< insert figure 3 here >> 

 

5. CONCLUSION 

 In this paper the analytical and geometrical constructions of the domain of attaraction of 2-

player Puu adjustment dynamics was achieved by choosing the coordinates of Cournot 

equilibrium as bifurcation parameters. Such a choice of bifurcation parameters allows to describe 

analytically the set of all possible bifurcation phenomena and to visualize the preset bifurcation 

events. 

 In Sonis (2000), analogical method was elaborated for a 3-player Cournot game in their 

space of orbits while Agiza (1998) studies the stability of 3-player and 4-player Cournot games 
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and characterizes their bifurcation in the space of orbits.  Variations introduced to the study of 

the adjustment dynamic of the Cournot model involve heterogeneous expectations in Agiza and 

Elsadany (2002) where the authors showed that varying the adjustment speed of the bounded 

rational player leads to unstable behavior, or capacity constraint (see Puu and Norin, 2003) 
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Figure 1: Domain of attraction of the Cournot equilibrium in the space of orbits and 5-period 
dynamics ( 0.690985λ µ= = , Time: 5000, Fixed point: 2000) 
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Figure 2. Two-dimensional bifurcation diagram describing the 4-periodic cycle 
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Figure 3. Two-dimensional bifurcation diagram describing the 9-periodic cycle 


