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Abstract 

 
This paper discusses three modeling techniques, which apply to multiple time series 

data that correspond to different spatial locations (spatial time series). The first two 

methods, namely the Space-Time ARIMA (STARIMA) and the Bayesian Vector 

Autoregressive (BVAR) model with spatial priors apply when interest lies on the spatio-

temporal evolution of a single variable. The former is better suited for applications of 

large spatial and temporal dimension whereas the latter can be realistically performed 

when the number of locations of the study is rather small. Next, we consider models that 

aim to describe relationships between variables with a spatio-temporal reference and 

discuss the general class of dynamic space-time models in the framework presented by 

Elhorst (2001). Each model class is introduced through a motivating application.  
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1. Introduction 

 

Research in statistical/econometric models that describe the spatio-temporal evolution 

of a single variable or multi-variable relationships in space and time started in the mid-

seventies and has significantly increased during the last twenty years since it’s closely 

related to the progress in computer technology and the existence of large databases. 

Cliff and Ord (1975) were the first to perform a model for the relationship between two 

variables in space and timea; since then several techniques have been developed 

corresponding to different inferential needs and data types. The present paper aims to 

summarize the proposed methodologies discussing each one through a motivating 

example that points out the cases where each model class is best suited. 

  

The STARIMA model class developed at the early eighties by Pfeifer and Deutsch 

(1980a, 1980b, 1981a, 1981b, 1981c) is presented in section 2.1. Similar to ARIMA 

model building (see Box et al. 1994) for univariate time series, STARIMA model 

building is a three-stage procedure (identification–estimation–diagnostic checking). 

Although tedious in its implementation it has been applied to numerous applications 

ranging from environmental (Pfeifer and Deutsch 1981a, Stoffer 1986), to 

epidemiological (Pfeifer and Deutsch 1980a), and econometric (Pfeifer and Bodily 

1990). The motivating example in this case comes from traffic flow modeling where, 

based on measurements taken from a set of loop detectors in a very frequent basis, a 

single statistical model describes the evolution of traffic conditions in an urban network. 

Kamarianakis and Prastacos (2002, 2003) used the hierarchical neighbor specification 

of the STARIMA methodology to capture the causality relations due to road network 

topology; moreover they performed a forecasting experiment where despite their very 

parsimonious formulation STARIMA models performed very well.   

 

STARIMA models, although well suited for applications of large spatial scale they 

appear to be too parsimonious when the spatial time series study involves only a few 

measurement locations. As Giacomini and Granger (2001) point out the STARIMA 

class can be derived through a (nontrivial) transformation of the Vector Autoregressive 

                                                 
a Cliff and Ord’s approach falls in the general model class presented at section 3.1.  
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Moving Average (VARMA) model; the transformation is in fact a restriction related to 

the neighborhood structure as revealed by a set of weight matrices. When the number of 

locations involved in the time series study is very small the researcher may proceed 

through VARMA model specification that pertains to the estimation of ( ) SSp +× 2  

parameters (p time lags, S locations). As the number of locations increases, the over-

parameterized VARMA formulation leads to a large number of statistically non-

significant parameters. LeSage and Krivelyova (1999) proposed a class of prior 

distributions for the Bayesian implementation of the VAR (BVAR) model that loosely 

constrains to zero the parameters that correspond to non-neighboring locations and large 

temporal lags. Section 2.2 presents BVAR models with spatial priors. The example 

application in this case is a model for employment time series that correspond to eight 

different American states.    

 

The third part of the paper discusses models for multi-variable spatial time series. We 

focus on the general class of dynamic space-time models as formulated by Elhorst 

(2001). Even in the case this model class includes only temporal and spatial lags of the 

response as explanatory variables it differs from the models presented at the second part 

since it involves instantaneous spatial terms. A significant feature of this approach is 

that it can be transformed to take the form of an equilibrium correction model that 

permits the quantification of both long-term equilibrium relationships and short-term 

dynamics. Model order selection via classical procedures appears to be problematic 

since non-nested models may have to be compared.  The example application in this 

case is a model for the space-time relation between employment and labor force 

participation. 

 

Another class of models that apply to spatial time series are the Seemingly Unrelated 

Regressions (SUR) presented first by Zellner(1962); in this case each regression 

equation corresponds to a different location and the geographical relations are modeled 

implicitly in the covariance matrix of the system of equations. Anselin (1988) presented 

an alternative SUR formulation, the spatial SUR. In spatial SUR each equation 

corresponds to a different time period; in contrast with the simple SUR, to perform 

spatial SUR the investigator must have a dataset of a larger spatial rather than temporal 

dimension. When the number of cross-sections is larger than the number of time periods 
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involved in a study, we enter the field of panel data models. Panel data and SUR models 

are not discussed in this paper. For a thorough discussion on the former see chapter 12 

of Johnston and DiNardo (1997).    

 

 

2. SPATIAL-TIME SERIES MODELS OF A SINGLE VARIABLE 

 
2.1 The STARIMA model class 

 
Motivating Application: Traffic Flow Modeling 

Traffic flow data in metropolitan areas are collected by loop detectors located at major 

arterials of the road network. The detectors provide traffic volumes (number of cars that 

passed over the detector in a specific time interval, usually one minute), densities 

(proportion of time over a specific time interval that cars were over the detector) and 

speeds. Figure 1 depicts a set of loop detectors at the road network of Athens, Greece. 

 

 

 
FIGURE 1: Loop detectors in a road network 

 

In traffic flow systems tree structures are the most common method for network 

representation. The direction of the vectors of the tree follows the permitted traffic 

direction, whereas traffic flow measurements are taken at specific points of the network 

(Figure 2). If we assume that the traffic flow process forms a “black-box” network, i.e. 
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one that does not have access to any information other than past or present flows, then 

from Figure 2 it is clear that some measurement locations may not be connected through 

a path and therefore may act independently. If we also ignore any external effects and 

consider the distance between the measurement locations to be sufficiently long so as no 

congestion effects are introduced to disturb the flow pattern, no measurement location 

will be influenced by actions occurring downstream from it. Thus, downstream 

locations only depend on upstream locations but not vice versa. The question that has to 

be answered is how to exploit this structure in model identification and yet retain the 

statistical properties of the traffic flow process.   The spatial topological relationships of 

a network as the one presented in Figure 2 can be introduced through a hierarchical 

ordering for the neighbors of each measurement site. This is the basis for system 

structuring using STARIMA model building. We shall call lW  a square NN ×  lth order 

weight matrix with elements )(l
ijw  that are nonzero only in the case that the measurement 

locations i and j are “lth order neighbors”.  First order neighbors are understood to be 

closer than second order ones, which are closer than third order neighbors and so on.     

 
            FIGURE 2. The typical road network tree structure for traffic flow. The dots represent  

                    measurement locations and the arrows the direction of flow. 
 

 The weights )(l
ijw  are taken so that ∑

=
=

N

j

l
ijw

1

)( 1 and 0W  is the identity matrix since 

each site is its own zeroth order neighbour. Applying this rule to the network of Figure 

2 and assigning equal weights to the lth order neighbours of each site yields the 

following weight matrices for spatial lags 1 and 2: 
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Additional features such as the distances of each neighboring pair of sites are usually 

incorporated into the weighting matrices through an appropriate selection of weights. 

 

Model Formulation 

In the early eighties Pfeifer and Deutsch (1980a, 1980b, 1981a, 1981b, 1981c) introduced the 

STARIMA methodology. Here is a characterization of this model class by its creators: 

“…Processes amenable to modeling via this class are characterized by a single random variable 

observed at N fixed sites in space wherein the dependencies between the N time series are 

systematically related to the location of the sites.  A hierarchical series of NN ×  weighting 

matrices specified by the model builder prior to analyzing the data is the basic mechanism for 

incorporating the relevant physical characteristics of the system into the model form. Each of the 

N time series is simultaneously modeled as a linear combination of past observations and 

disturbances at neighboring sites. Just as univariate ARIMA models reflect the basic idea that 

the recent past exerts more influence than the distant past, so STARIMA models reflect (through 

the specification of the weighting matrices) the idea that near sites exert more influence in each 

other than distant ones.”   

 

Thus the STARIMA model class expresses each observation at time t and location i as a 

weighted linear combination of previous observations and innovations lagged both in space and 

time. The basic mechanism for this representation is the hierarchical ordering of the neighbors of 

each site and a corresponding sequence of weighting matrices as presented in the previous 

paragraph. The specification of the weighting matrices is a matter left to the model builder to 
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capture the physical properties that are being considered endogenous to the particular spatial 

system being analyzed. 

If tZ  is the 1×N  vector of observations at time t at the N locations within the road network then 

the seasonal STARIMA model family is expressed as, 

 

( ) ( ) ( ) ( ) tmq
S
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klΦ  and klφ  are respectively the seasonal and nonseasonal autoregressive parameters at temporal 

lag k and spatial lag l; similarly klΘ and klθ  are the seasonal and nonseasonal moving average 

parameters at temporal lag k and spatial lag l; P and p are the seasonal and nonseasonal 

autoregressive orders; Q and q are the seasonal and nonseasonal moving average orders. kΛ  and 

kλ  are the seasonal and nonseasonal spatial orders for the kth autoregressive term; kΜ  and km  are 

the seasonal and nonseasonal spatial orders for the kth moving average term; and D and d are, 

respectively, the number of seasonal and nonseasonal differences required, where D
S∇  and d∇  are 

the seasonal and nonseasonal difference operators, such that i.e., ( )DSD
S Β−Ι=∇  and ( )dd Β−Ι=∇  

with seasonal lag S. Finally, ta  is the random, normally distributed, error vector at time t with 

statistics: 
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{ } 0=′+stt aZE  for 0>s .                            (2c) 

    

Equation (1) is referred to as a seasonal multiplicative STARIMA model of order 

( ) ( )Sm QDPqdp ΜΛ× ,,,,λ .  

 When there is no seasonal component (quite unlikely in traffic flow) and d=0 the model 

collapses to the easier to interpret STARMA model which is of the form 
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−
=

− +−=
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m

l
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l
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kk

aaWZWZ
1 1 00
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where p is the autoregressive order, q is the moving average order, kλ  is the spatial order of the 

kth autoregressive term, km is the spatial order of the kth moving average term, klφ  and klθ  are 

parameters to be estimated and lW  is the NN ×  matrix for spatial order l and ta  is the random 

normally distributed innovation or disturbance vector at time t. 

 STARMA models can be viewed as special cases of the Vector Autoregressive Moving 

Average (VARMA) models (Lutkerpohl 1987, 1993). The VARMA models use general NN ×  

autoregressive and moving-average parameter matrices to represent all autocorrelations and 

cross-correlations within and among the N time series. If the diagonal elements in these matrices 

are assumed to be equal (as in the case where the N series represent a single random process 

operating at different sites) and the off-diagonal elements are assumed to be a linear combination 

of the lW  weight matrices then the general VARMA family collapses to the STARMA model 

class. The VARMA model class on the other hand, can be viewed as a special case of the state-

space model, which is the only multivariate technique presented in the literature of traffic-flow 

modelling so far. It’s obvious from (1) and (3) that the STARIMA methodology provides a great 

reduction in the number of parameters that have to be estimated compared to the VARMA or the 

state-space model classes and thus facilitates the performance of applications of large spatial 

scale (large number of measurement locations).  

 

Identification stage 

Model identification is the first of the three stages of the iterative procedure commonly attributed 
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to Box et al. (1994). The model form of the STARIMA class is tentatively chosen after an 

examination of the space-time autocorrelation and space-time partial autocorrelation functions 

that can be viewed as the 2-dimensional analogues of the usual autocorrelations and partials used 

to identify univariate ARMA models The sample space-time autocorrelation at spatial lag l and 

temporal lag s is calculated via  
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For the space-time analogue of the Yule-Walker equations the space-time covariance function 

is needed 
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which can be seen to be equivalent to 
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where [ ]stt ZZEs +′=Γ )(  and ][Atr is the trace of A defined on square matrices as the sum of the 

diagonal elements. )(sΓ  is estimated by  
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Premultiplying both sides of the general STAR model 
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Taking expected values and dividing both sides by N yields  
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since [ ] 0=′− tst aZE  for s>0. This system is the space-time analogue of the Yule-Walker equations 
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for univariate time series. The set of last coefficients klφ ′ obtained from solving the system of 

equations as l=0,1,..,λ for k=1,2,… forms the space-time partial correlation function of spatial 

order λ. Analogously to univariate time series STARMA processes are characterized by a distinct 

space-time partial and autocorrelation function. Purely autoregressive STAR ( )λp  processes 

exhibit space-time autocorrelations that tail off both in space and time and partial 

autocorrelations that cut off after p lags in time and λ lags in space whereas STMA ( )mq  processes 

exhibit autocorrelations that cut off after q lags and partials that decay over time and space. 

Mixed models exhibit partials and autocorrelations that tail off with both time and space. For a 

thorough discussion on these matters the reader should consult Pfeifer and Deutsch (1980a, 

1980b). 

 

Estimation  

STARIMA (p,d,q) models with 0≠q  are non-linear in form so parameter estimation is 

performed using any of a variety of non-linear optimization techniques. As discussed in Pfeifer 

and Deutsch (1980a), gradient methods have found use, as has linearization, an iterative 

technique that at each stage “linearizes” the non-linear model using Taylor’s expansion and 

solves approximate normal equations for the next guess at the optimum parameters. Normally, 

one has to minimize the expression 
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where the first few alphas are functions of observations and errors at times before the initial 

epoch observed; this difficulty is sidestepped by substituting zero, the unconditional mean for all 

values of tZ  and tα  with t<1.  

 

Diagnostic Checking 

The first phase of diagnostic checking is the examination of the residuals from the fitted model; 

these should be distributed normally with zero mean, have a spherical variance–covariance 

matrix and autocovariances at nonzero lags equal to zero. Usually the sample space-time 
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autocorrelations and partials of the residuals are computed and compared to their theoretically 

derived variance. If the residuals are approximately white noise, the sample space-time 

autocorrelation functions should all be perfectly zero; otherwise they may follow a pattern that 

can be represented by a STARMA model, which may be coupled with the one initially proposed 

and lead to a better updated model. The second phase of the diagnostic checking involves 

checking the statistical significance of the estimated parameters based on the approximate 

confidence intervals proposed by Pfeifer and Deutsch (1980a). The insignificant parameters 

should be removed and the resulting simpler models should be again estimated and passed 

through the diagnostic checking stage until all parameters are statistically significant and the 

residuals meet the required constraints. 

 

Final Remarks 

It appears that STARIMA modeling can be a useful tool in cases where the researcher faces 

datasets of large spatial and temporal dimension. Kamarianakis and Prastakos (2002, 2003) used 

this technique for modeling the traffic conditions of a large part of the road network depicted in 

figure 1 and they compared its forecasting accuracy to the one obtained by ARIMA models (one 

model for each detector). Although the number of parameters in the STARIMA model is about 

one tenth of the total number of parameters of the univariate models, they perform surprisingly 

well. The major gain in this case is that the researcher has a single model to explain the dynamics 

of traffic flow of the whole network, which can be used not only for forecasting but also for 

impulse control  (i.e. quantification of the effect of a traffic shock to downstream locations).  

 

 2.2 Bayesian Vector Autoregressive Models with Spatial Priors  
 
Example Application: Forecasting Regional Employment 
 
In macroeconomic modeling the available data are much less compared to the traffic flow 

application presented in the previous paragraph. Consider for example the monthly employment 

time series from 1982 to 1995 that correspond to eight neighboring American states  (Illinois, 

Indiana, Kentucky, Michigan, Ohio, Pennsylvania, Tennessee, and West Virginia) analyzed by 

LeSage and Krivelyova (1999). In this case the researcher may proceed via using the STARIMA 

approach taking neighboring structures into account, or he may choose a VARMA model. The 
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former strategy appears to be too parsimonious whereas the latter over-parameterized. A 

STARIMA model of (both AR and MA) spatial order two and temporal order four (a possible 

outcome of the identification stage for the dataset we consider) would be represented by 24 

parameters. On the other hand, a VARMA model of AR and MA order four would pertain to the 

estimation of 520 parameters and a large proportion of them is expected to be statistically 

insignificant. LeSage and Krivelyova (1999) circumvented this problem by implementing a 

Vector Autoregressive model (no-moving average terms were included) by imposing priors that 

loosely constrained the parameters that correspond to large temporal lags and non-neighboring 

locations to zero. In a detailed forecasting experiment their approach based on spatial priors 

provided more accurate out of sample forecasts than the conventional Bayesian VAR approach 

based on the so-called “Minnesota prior” (Doan, Litterman and Sims 1984).     

 

Model Specification 

A principle behind much of the modeling in regional science is that location in space is 

important. LeSage and Krivelyova (1999) incorporated that principle in the VAR model in form 

of prior information. This prior is applied to the coefficients of a VAR model shown (in compact 

form) in equation (10) that involves n variables, where εit denotes independent disturbances, Ci 

represents constants, and yit for i=1,…,n denotes the n variables in the model at time t. Model 

parameters Aij(l) take the form, ∑
=

m

k

k
ijk la

1
where l is the lag operator defined by lkyt=yt-k and m is 

the autoregressive order of the (VAR(m)) model.  
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The n variables in our case reflect time series from n areas and the VAR structure posits a set of 

relationships between past lagged values of all locations in the model and the current value of 

each location. For example if the yit represent employment in state i at time t, the VAR structure 

allows employment variation in each state to be explained by past employment variation in the 
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state itself, yit-k, k=1,…m, as well as past employment variation in other states, yit-k,  k=1,…m, 

ij ≠ .  

 

The Bayesian implementation of the VAR model is based in prior specification for each 

unknown parameter in the model; the combination of prior distributions with the likelihood 

obtained by the data leads to the derivation of the posterior distributions in which the researcher 

can base his inference. The set of prior means developed for the BVAR model in this case were 

motivated by first-order spatial contiguity relations of the type employed in spatial 

autoregressive models for cross-sectional data. Hence the prior mean for the coefficients on 

variables associated with first own-lag spatially contiguous variables is equal to 1/c, where c is 

the number of spatial entities contiguous to each variable in the model. In other words the spatial 

prior is centered on a random-walk model that averages over contiguous entities and allows for 

drift 

 ∑
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where Ci is the set of ci entities contiguous to entity i. Consistent with traditional approaches to 

BVAR modeling the prior means are set to zero for coefficients on all lags other than first lags. 

Bayesian approaches that specify prior means of zero for all coefficients in a model have often 

been successful in dealing with collinearity problems in regression models. This approach in 

specifying prior means requires that the time series data on the various spatial entities need to be 

scaled or transformed to have similar magnitudes. If this is not the case, it would make little 

sense to indicate that the value of a time series observation at time t was equal to the average of 

values from time series observations taken from spatially contiguous entities. This should be no 

problem as time series data can always be expressed in percentage change form or annualized 

growth rates. 

 

The prior variances for the parameters in the model differ according to whether the coefficients 

are associated with variables from contiguous or noncontiguous entities and with the lag length. 

The intuitive motivation for this is the twofold belief that: 1) noncontiguous variables are less 
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important than contiguous because there is a decay of influence with increasing distance 

between spatial entities; and (2) longer lags are less important than shorter lags because there is a 

decline of influence over time. Time-series observations from the more distant past exert a 

smaller influence than recent observations on the current value of the spatial time series we are 

modeling. These two beliefs are reflected in the prior variance specification by: 

- Parameters associated with noncontiguous time series variables are assigned a smaller 

prior variance, so the zero prior means are imposed with more certainty. 

- First own-lags of contiguous time-series variables are given a smaller prior variance, so 

the prior means forcing the time series to equal the average of neighboring time series are 

imposed tightly. Tight imposition of these prior means reflects the belief that contiguous 

spatial series should exhibit co-movement over time. 

-  Parameters associated with noncontiguous variables at lags greater than one will be 

given a prior variance that becomes smaller as the lag length increases, imposing the 

prior means of zero more tightly for longer lags. This reflects the belief that influence 

decays with time and noncontiguous entities are unimportant. 

- Parameters associated with lags other than first own-lag of the contiguous time-series 

variables will have a larger prior variance, so the prior means of zero are imposed 

“loosely”. This is motivated by the fact that there is not a great deal of confidence in the 

zero prior mean specification for lagged values of contiguous spatial time-series 

variables.    

A flexible form with which to state the spatial prior means and standard deviations for variable j 

in equation i at length k is shown right below in (12)-(15),   

 









= c

i
ijk c

Na σπ ,1)(  Cj∈ ,  k=1;   i,j=1,..,n 







=

k
Na c

ijk
τσ

π ,0)(  Cj∈   k=2,…,m;  i,j=1,..,n  (12) 







=

k
Na c

ijk
θσ

π ,0)(  Cj∉   k=1,…,m;  i,j=1,..,n  

where    
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10 << cσ ,           (13) 

 1>τ ,           (14) 

 10 << θ .          (15) 

 

For variables j=1,..,m in equation i that are contiguous to variable i,  ( Cj∈ ), the prior mean for 

lag length k=1 is set to the average of the number of entities c contiguous to variable i, and to 

zero for noncontiguous variables ( Cj∉ ). The prior standard deviation is set to σc for the fist lag 

and obeys the restriction set forth in (13), reflecting a tight imposition of the prior mean, 

motivated by spatial contiguity. τσc/k is used for lags greater than one and imposes a linear 

decrease in this variance as the lag length increases. Equation (14) states the restriction necessary 

to ensure that the prior mean of zero is imposed on the parameters associated with lags greater 

than one on contiguous time series loosely, relative to a tight imposition of the prior mean of 1/ci 

on the first own lags of contiguous time series variables.  τσc/k is used for lags on noncontiguous 

variables whose prior means are zero, imposing a linear decrease in the variance as the lag length 

increases. The restriction in (15) would impose the zero means for noncontiguous states with 

more confidence than the zero prior means for contiguous states. 

 

 

3. MODELS FOR MULTIPLE SPATIAL TIME SERIES’ RELATIONS 

 

3.1 The General First-order Serial and Spatial Autoregressive Distributed Lag Model 

 

Example Applications and Model Illustration 

Following the lines of section 2.1, in transportation literature there is extensive interest in the 

functional relation between traffic flows and densities. Instead of modeling the spatio-temporal 

evolution of traffic conditions, this time the researcher is interested in the relation between 

volumes and densities that are observed in space and time. The temporal dimension of the dataset 

in this case is much larger than the spatial one. In regional macroeconomic modeling on the other 

hand (section 2.2), researchers are usually confronted with the estimation of relationships 

between variables like GDP, employment, labor force participation, productivity, etc. that 
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correspond to different regions (or states or prefectures) and are in the form of (usually short) 

time series. As an example the reader may consider twenty annual observations for two 

variables, employment and labor force participation, that correspond to ninety-five French 

(NUTS 3) regions. This dataset is part of the REGIO database provided by EUROSTAT and is 

similar to the one used by Elhorst (2001) for the illustration of the model that is presented in this 

section. In this case it is the spatial dimension that is significantly larger than the temporal one. 

 

 The general first-order serial and spatial autoregressive distributed lag model in vector form for 

a cross-section of observations at time t is represented by 

 

ttttttttt uWXWXXXWYWYYY +++++++= −−−− 14312111 ββββηδτ    (16) 

 

where Yt denotes a 1×n  vector consisting of one observation for every spatial unit (i=1,…,n) of 

the dependent variable in the tth time period(t=1,…T). Xt denotes a 1×n  vector of the 

independent variable; the generalization of the model for multiple independent variables and 

second third etc. order is straightforward.  τ, δ, η, β1, β2, β3, β4, are the response parameters, ut is 

a  1×n  vector containing the error terms and is normally distributed with 0)( =tuE  and 

ntt IuuE 2),( σ=′  and W denotes an nn×  weight matrix describing the geographical arrangement 

of the spatial units. Subscript t-1 denotes a serially lagged variable and a variable premultiplied 

by W denotes its spatially lagged value. We assume that the characteristic roots of the weight 

matrix are known and the following relationship holds between δ the minimum and maximum 

characteristic roots 

   

 
maxmin

11
ω

δ
ω

<< .         (17) 

 

The former assumption is needed to ensure that the log-likelihood function of the model can be 

computed whereas the latter facilitates the maximum likelihood estimation of δ and ensures 

invertibility of the matrix (I-δW).  
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Equation (16) involves instantaneous relations between Y, WY, X and WX so it’s not well 

suited for forecasting purposes; even without the presence of the X regressor in (16) this model 

class is different from the ones presented in the pervious sections. Its formulation is useful for 

empirical inference concerning long run equilibrium relationships between economic variables 

short run dynamics (how fast the equilibrium is approached). Reformulating (16) we obtain an 

equilibrium correction model 

 

( ) ( ) ( ) ( ) tttttt uXWXXYWYWWLI +∆−++++∆+−=−−− 24321 βββββητηδτ      (18) 

 

which implies the following static long-run equilibrium relationship between Y and X  

 

 ( )( ) ( )( )[ ] tnnnnt XWWWIIWWIIY 1
43

1
21

−− −−−++−−−+= ηδτββηδτββ .      (19) 

 

A spatial unit in an equilibrium correction model is not only influenced by its local conditions 

but also by those of its neighbors dependent on the structure of the weight matrix. For n locations 

and k regressors there are kn×  different “long-run” parameter estimates. 

 

Technical Details 

Let  

 WIB δ−= , WIA ητ +=              (20) 

When <−1AB 1 the process generating the data is stationary in time. Stationarity in space is 

more difficult to impose. Kelejian and Prucha (1999) formulated one necessary condition that 

must be satisfied: the row and the column sums of the spatial weight matrix must be bounded 

uniformly in absolute value as ∞→n . For inverse distance matrices this condition is not 

automatically satisfied. 

  

Regarding model class (16) and its generalization to higher temporal orders and multiple 

regressors there are still issues that need to be investigated. Estimation by maximum likelihood 

appears to be cumbersome; the model is also highly susceptible to multicollinearities, an issue 
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that was not touched by Elhorst (2001). Finally model order selection tests based on Wald or 

Lagrange multiplier statistics do not lead to clear conclusions since model selection involves 

comparisons between non-nested models. Bayesian methods have been used successfully to 

tackle some of the above issues and it appears that this model class can be a new field for their 

application. 
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