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TOWARD A QUANTITATIVE ANALYSIS OF INDUSTRIAL CLUSTERS I: 
FUZZY CLUSTER VS. CRISP CLUSTERS 

 
 
 
1. INTRODUCTION 
 

Economists and policy makers alike are often faced with data that require treatment to 

become useful for further uses such as analysis, pattern detection, interpretation, or comparison.  

For Bergman and Feser (1999), "industry cluster analysis can help exploit the growing wealth of 

regional economic data, provide a means of thinking effectively about industrial 

interdependence, and generate unique pictures of a regional economy that reveal more effective 

policy options."  Popular methods to conduct cluster analysis include graph theory analysis 

(Campbell 1974), block decomposition analysis drawing on the theory of Markov chains 

(Hewings et al., 1997), value-chain-analysis used by Porter (1998a and 1998b), and input-output 

analysis (O'Huallachain 1984). 

A particular set of data of interest to us is the input-output table of a country or a region; 

therefore, the methodology we are promoting is not concerned with the spatial dimension of the 

clusters, although we believe that the use of regional input-output tables should allow a thorough 

study of regional clusters.  The nomenclature of input-output tables is based on an association 

structure that groups together sectors with similar activities that ultimately fall in one and only 

one of the following large categories; agriculture, industry, or services.  However, this 

classification does not provide enough information on the functional and structural similarities 

between industrial profiles.  The use of cluster analysis facilitates the identification of industries 

with similar sales or purchases profiles.  The importance of clusters identification is not only of 

interest to policy makers, but as stated by Porter (1990), their existence influences the creation 

and development of firms through investment in infrastructure and R&D partnerships. 
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Nevertheless, traditional cluster detection and analysis are for the most part based on 

crisp sets, where each industry belongs to one and only one cluster; this restriction obviously 

limits the use of industrial clusters and yields an unrealistic description of the economy since 

industries in fact might have similarities not only with some but with all industries to varying 

degrees. 

Cluster identification producing crisp clusters are primarily useful for aggregation 

purposes and do not offer ways for a quantitative analysis of clusters.  This paper is the first part 

of a two-paper series that departs from crisp clustering approaches to fuzzy clustering methods in 

an attempt to move toward a quantitative analysis of clusters.  While this paper aims to further 

the investigation into cluster analysis, we make a departure from traditional cluster analysis by 

considering 'blurred overlapping' clusters through the adoption of fuzzy clusters.  Fuzzy clusters, 

unlike crisp clusters where each element belong to one and only one cluster, allow for vagueness 

in the belongingness to a particular clusters.  In addition to being more realistic, fuzzy cluster 

take into account the imprecision that often exists in the data, as well as the very real possibility 

that a sector may have close associations with more than one cluster.  In a sense, fuzzy cluster 

analysis may resonate more formally with prior work that has come to be known as industrial 

complex analysis in which sets of industry associations were identified with the possibility of a 

sector belonging to more than one complex (see Czamanski and Ablas, 1979; Isard et al., 1959).  

In this regard, the fuzzy cluster approach provides the capability of exploring a more complex 

summary of structural interdependence in an economy, placing it between the mutually exclusive 

cluster systems on the one hand and the presentation of the complete set of linkages evident in an 

examination of the full input-output table.  It does share more of the character of the Czamanski 

and Ablas (1979) approach; a sector involved with two or more clusters plays a different role in 
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the economy than one that is entirely nested within just one cluster.  The crisp versus fuzzy 

problem has a strong parallel in the primary versus secondary product issue in assigning firms to 

sectors (a problem that was addressed in the development of the make-use distinction in input-

output accounting systems).  The second paper explores applications of the Shapley value 

(Shapley, 1953) and other fuzzy measures and introduces the notion of a lead sector in a cluster. 

 The method employed here is based on results obtained from dual scaling, a term coined 

by Nishisato (1980).  Dual scaling is considered a technique of multivariate descriptive analysis; 

it is not inferential and is similar to principal component analysis (PCA) for categorical data 

approach, except that in a single run it provides primal and dual solutions.  Nishisato (1980 and 

1994) offers a description of the dual scaling approach and Dridi and Hewings (2002b) showed 

how it can be used in the context of input-output models to decompose the internal structure of 

associations into open and closed loops of associations, leading to the identification of a finite 

number of stages of economic complexity.  The results obtained from dual scaling are row 

weights and their dual, column weights.  Those weights, among other things, can be used for 

cluster analysis.  In O'Huallachain (1984), a reassessment of PCA was made where the method 

was applied to identify row clusters and column clusters, but the methodology was not used to 

assess the relationship between row-sectors and column-sectors as in Dridi and Hewings (2002a) 

and, furthermore, the clusters produced are crisp. 

Without the need to revisit the dual scaling approach, in the next section a formal 

description of a popular hierarchical decomposition technique suggested by Ward (1963) is 

examined along with a fuzzy clustering approach.  In section 3, for illustration, results from dual 

scaling are used for the 1990 US input-output tables to first identify crisp clusters using the 
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Ward's method and fuzzy clusters methodology and, secondly, to compare both methods and 

results.  We conclude with a summary of results and further research possibilities. 

 
2. CRISP AND FUZZY CLUSTERING METHODS 
 
2.1. Ward's Algorithm for Crisp Clusters 

 Cluster identification is a relatively easy task if the data are represented by two variables, 

since a two-dimensional plot allows visual identification of all relevant clusters.  However, this 

task becomes less straightforward for multi-dimensional representation of industries as is the 

case with input-output data decomposed into 10 dimensions using dual scaling (Dridi and 

Hewings, 2002a and 2002b).  This decomposition obviously makes any visualization of the crisp 

clusters impossible and requires elaborate clustering techniques.  A wide class of data 

partitioning has been based on hierarchical methods of agglomerative nesting; Ward (1963) 

introduced a very popular clustering method that we described in the present section. 

 At the beginning of the algorithm (step 0), each object (here, an industry) is considered as 

a separate cluster.  The following iterative steps successively merge clusters with the smallest 

dissimilarity while leaving the others unmerged (step 1).  Then, the dissimilarity between the 

new cluster and the rest of the clusters is computed (step 2) and step 1 is repeated until all 

industries are part of a single cluster (Kaufman and Rousseeuw, 1990). 

The between cluster dissimilarity measure used by Ward is as follows: 

( ) ( ) ( )
( ) ( ) ( )( )22 2.card R .card Q

,
card card( )

d R Q x R x Q
R Q

= −
+

      (1) 

 In the above expression card(.) is the number of elements (i.e. cardinality) in a given 

cluster, and ( ).x  is the centroid of the cluster.  In a cluster with K variables (i.e. dimensions), the 

centroid of a cluster R is: 
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( ) ( )( )1 ( ),..., ,..., ( )k Kx R x R x R x R=         (2) 

such that ( ) ( )
1

cardk ik
i R

x R x
R ∈

= ∑ ; where ikx  is the value for individual i along the dimension k, 

k K∀ ∈ . 

In case the cluster R is obtained through a merger of clusters A and B, i.e. 

( )card card( ) card( )R A B= + , its centroid is then: 

( ) ( )
( ) ( ) ( )

( ) ( )
card card
card card

A B
x R x A x B

R R
= +        (3) 

 
2.2. Sectors Similarities and Fuzzy Classification1 

Usually similarity studies and cluster analysis are used for aggregation purposes (Blin 

and Cohen, 1977), where each industry has to belong to a unique cluster: this should not exclude 

the possibility of overlap in clusters.  In order to investigate clusters overlaps, we use fuzzy set 

theory where set distinctions are not crisp (see Miyamoto, 1990; Mirkin, 1996) 

 Over thirty-five years ago Zadeh (1965) introduced fuzzy sets and fuzzy logic, where he 

defines a fuzzy set as being "a class of objects with a continuum of grades of membership."  

Indeed, in fuzzy set theory, in contrast to Cantorian set theory, elements belong to a set 

according to a membership function that takes values in the range [0,1]  instead of taking a 

binary value from {0,1}, which means that Cantorian sets are particular cases of fuzzy sets with 

membership of 0 or 1. 

 
<< insert figure 1 here >> 

 

                                                           
1 This section draws on Dridi and Hewings (2002a) 
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In panel (a) of figure 1, assume four industries where an application of Ward's algorithm 

reveals a similarities between industries A and B form one hand and between industries C and D 

from the other, each pair of industries constitutes a distinct cluster (rectangle and oval).  In panel 

(c) of the same figure an analysis conducted in line with Czamanski and Ablas (1979) might 

reveal that industries A and B are similar but also that industries B and C are similar too, while 

industry D is not similar to any of them.  Therefore, industries A and B form a cluster (rectangle 

set) that overlaps with the cluster formed by industries B and C (oval set).  In panel (b), using 

fuzzy sets, the analysis might reveal that while industries A and C belong fully to respectively the 

rectangular and oval clusters, industry B does not belong fully to either clusters but belongs to 

both of them with varying degrees while industry D does not belong to any of the two clusters. 

Unlike the crisp clustering method, fuzzy clustering is concerned with pattern discoveries 

between sectors rather than their aggregations, hence, it is a discovery tool rather then a 

summarizing or simplification tool.  The use of fuzzy set theory in social sciences in general and 

economics more particularly, helps avoiding certainties in conclusions based on data that might 

be inaccurate because of sample bias or collection errors or where interpretation may be less 

precise.  Ragin (2000) suggests that the ability of fuzzy sets to explore and express a greater 

diversity in the data is useful in bringing closer data analysis and theoretical models in social 

sciences, since "fuzzy sets can be carefully tailored to fit theoretical concepts". 

Formally, let X be a reference finite and countable space of points, where a generic point 

is denoted by x.  A fuzzy set (or subset) A X⊆  is characterized by a real valued membership 

function ( )A xµ  that associates with each point x  a value from a real interval usually normalized 

to [0,1] .  For notational clarity and to distinguish between fuzzy sets and crisp sets it is common 

to denote a fuzzy set A by A , however for ease of notation we will use, A, and specify whether is 
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fuzzy or crisp when such specification is necessary.  The fuzzy subset A of X is a set of ordered 

pairs ( ){ }| ( ) ;Ax x x Xµ ∀ ∈ , where ( )A xµ  is the grade or degree of membership of x in A. 

[ ]: 0,1A Xµ →           (4) 

If we denote by kA , 1,...,k K∀ = , all the subsets of the universal set X, then the following 

properties always hold: 

[ ]

1

( ) 0,1 ; , 1,...

( ) 1

k

k

A

K

A
k

x x X k K

x

µ

µ
=

 ∈ ∀ ∈ ∀ =



=

∑

        (5) 

One reason for the lack of use of fuzzy logic and fuzzy set theory in social sciences may 

be attributed to the problematic way the shape of the membership function is determined, an 

issue that has not received sufficient treatment in the literature.  Indeed, although assuming an 

ad-hoc shape for the membership function - as is often done when dealing with probability 

distribution functions - might be convenient for theoretical studies, it constitutes a serious 

departure from the data's underlying patterns when used for applied work.  An example of ad-

hoc defined probability distribution is used in Jackson (1986) to estimate technical coefficients in 

input-output tables2. Various shapes for membership function were proposed: for the most 

common shapes used see Kaufmann (1975, p. 168-171), and Harris and Stocker (1998, p. 849-

851).  Kaufman and Rousseeuw (1990, Ch.4) advanced an algorithm, retained in the statistical 

package S-Plus 20003, to compute the membership values. 

 The iterative algorithm proposed by Kaufman and Rousseeuw (1990) classifies r objects 

(here sectors) into k clusters based on the observation of s characteristics, variables, or 

                                                           
2 This is not a criticism of Jackson’s (1986) work since the underlying probability distributions for individual 
technical coefficients was not known and alternatives had to be proposed and evaluated in terms of their impacts on 
more macro economic analysis with an input-output model. 
3 A statistical package from Insightful Corp. 
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observations of a variable (here the dual scaling solutions, obtained by applying the method 

described in the appendix).  With ,i id ′  the distance computed in equation (a.11) for the supply 

profiles and (a.12) for the demand profiles, for each sector i and cluster k there is a membership 

ikµ value that solves the following program: 

2 2
,

,

21

1

1
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2
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        (6) 

 The software package considered allows a maximum number of clusters 1
2
nk = − , where 

in our case n is the number of industries (i.e. the size of the technical block).  Aside from 

numerical considerations specific to the algorithm, the maximum number of clusters is set so as 

no sector represents a unique cluster and that the number of sectors is not equal across clusters.  

However, the optimal number of clusters has to minimize the objective value in (6).  To assess 

the fuzziness of the resulting cluster, Dunn's partition coefficient is computed: 

2

1 1

r k
iv

k
i v

F
r
µ

= =

= ∑∑           (7) 

1 ,1kF
k
 ∈   

, for entirely fuzzy clustering 1
iv k

µ =  and 1
kF

k
= , and for entirely crisp sets 0ivµ =  

or 1ivµ =  and 1vF = .  A normalized Dunn's coefficient taking values from [ ]0,1  is computed 

by: 
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1
1

1 11

k
k

k

F kFkF
k

k
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         (8) 

Zadeh (1965) introduced elementary operations on fuzzy sets, such as equality, 

complementation, inclusion, intersection, and union.  Consider the following two fuzzy subsets 

iA  and jA  of the universal set X , whose membership functions are ( )
iA xµ  and ( )

jA xµ . 

equality: The subsets iA  and jA  are said to be equal if and only if their membership functions 

( )
iA xµ  and ( )

jA xµ  are equal for all x X∈ . 

( ) ( )
i jA Ax xµ µ=        ; x X∀ ∈   (9) 

complementation: The complement of a fuzzy set iA , denoted by c
iA , has a membership 

function: 

( ) ( )1c ii
AA

x xµ µ= −        ; x X∀ ∈   (10) 

However, since fuzzy logic violates the excluded middle principle, the intersection of a 

fuzzy set and its complement does not produce necessarily the empty set. 

inclusion or containment: The subset iA  is included or contained in jA , and denoted by i jA A⊆  

if and only if: 

( ) ( )
i jA Ax xµ µ≤        ; x X∀ ∈   (11) 

intersection: The intersection of two fuzzy sets iA  and jA  is a fuzzy set i jB A A= ∩  whose 

membership function is defined as: 

( ) ( ) ( ){ }min ,
i jB A Ax x xµ µ µ=      ; x X∀ ∈   (12) 

expression (12) can also be abbreviated by: 
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i jB A Aµ µ µ= ∧           (13) 

union: The union of two fuzzy sets iA  and jA  is a fuzzy set i jC A A= ∪  whose membership 

function is defined as: 

( ) ( ) ( ){ }max ,
i jC A Ax x xµ µ µ=      ; x X∀ ∈   (14) 

expression (14) can also be abbreviated by: 

i jC A Aµ µ µ= ∨           (15) 

α-cuts and α-level sets: For some analysis it might be necessary to exclude elements of a fuzzy 

set based on their membership value, the notion of α-cuts (Bojadziev and Bojadziev, 1997) can 

be used.  An α-level fuzzy set A, defined as Aα , is: 

[ ]{ }| ( ) ; 0,1 , ,AA x x x Y Y Xα µ α α= ≥ ∀ ∈ ∀ ∈ ⊆       (16) 

As mentioned earlier, the use of fuzzy logic allows for more flexibility in the treatment of 

industry clusters, the above fuzzy set operations will be used in the next section to discuss and 

extract information about clusters' structures of the sales and purchase profiles in input-output 

systems. 

 
3. CLUSTERS IN THE 1990 US INPUT-OUTPUT TABLE 

For illustration, both clustering methods described above are applied to a 33-by-33 input-

output table4 of the US for 1990 in current prices.  The details of the aggregation are provided in 

table A.1 of the appendix. 

                                                           
4 Source: OECD Input-Output database 
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The application of Ward's algorithm to the US input-output data results in the dendogram 

in figure 2 for the sales profiles and in figure 3 for the purchases profiles.  The hierarchical 

agglomeration reveals substantial differences between the two profiles. 

 

<< insert figure 2 here >> 

 

<< insert figure 3 here >> 

 

If we limit the number of clusters to fifteen, the clusters' memberships of each industry 

are very different for the sales and purchases profiles in addition to being mostly concentrated in 

one or two clusters (tables 1 and A.2).  The number of clusters is chosen to allow for 

comparisons with the application of fuzzy clusters that generates under the optimality criterion, 

fifteen clusters for the case at hand.  In table 1, for the sales profile clusters number 1 and 5, 

cover about half the industries, while for the purchases profile clusters number 1, 2, 3, and 4 

cover 20 out of 33 industries.  The remaining industries do not belong to any of the clusters 

mentioned above, for the most each industry represents a separate cluster, indeed for both sales 

and purchases profiles clusters number 7 through 15 are represented by only one industry. 

 

<< insert table 1 here >> 

 

 In figure 4, we provide plots that Kaufman and Rousseeuw (1990) call banner plot 

because of their resemblance to a waving flag.  The banner plots contain the same information as 

the dendograms in figures 2 and 3, but are constructed to show the successive mergers from left 

to right. Each industry is represented by a horizontal line and the shorter that line the lower is the 
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industry in the agglomerative hierarchy of figures 2 and 3.  In figure 4, the fraction of the dark 

area to the total area of the graph, is called the agglomerative coefficient ( [ ]0,1AC ∈ ) and it is 

equal to 0.76 for the sales profiles and 0.48 for the purchases profiles.  While the AC for the sales 

can be considered high, the purchases profile AC value is relatively low compared to a perfect 

clustering value of 1.  The AC is an indicator of the strength of the obtained clustering structure.  

In the case of the US input-output data, the AC indices are very different and show a stronger 

clustering for the sales profile then for the purchases profile. 

 
<< insert figure 4 here >> 

 
 A major shortcoming of crisp clusters seem to be the fact that many clusters are 

represented by one or two industries only while other group a large number of industries, there is 

an obvious lack of diversity in clusters' structure and a lack of density in many clusters.  This 

criticism of crisp clusters might be attributed to the level of aggregation in the data, however 

fuzzy clustering techniques applied to the same data, as will be shown below, give clusters that 

are diverse and dense. 

The application of the dual scaling technique in the appendix to the US 33-by-33 

interindustry input-output flows, generates a maximum number of solutions of 32, which means 

that each industry can be plotted in a space of dimension 32, where each solution occupies a 

dimension.  The 32 solutions for the weights for the sale profiles (rows) and the purchase profiles 

(columns). 

 Applying the fuzzy clustering algorithm in Kaufman and Rousseeuw (1990) to the sales 

and purchases profiles of the US input-output table provides the memberships to 15 fuzzy sets; 

the maximum number of sets was fixed by S-Plus.  However, lowering the number of sets to 14 
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for example proved to yield non-optimal values in terms of the objective function in (6); the 

membership values are provided in tables A.3 and A.4 of the appendix.  The overall fuzziness of 

the clustering can be assessed by Dunn's index in table 2. 

 
<< insert table 2 here >> 

 
For the US, Dunn's index suggests a similar fuzziness in both sales and purchase profiles.  

While the significance of the difference between the sales profiles Dunn's index and the 

purchases profiles Dunn's index cannot be statistically ascertained, their values suggest that an 

industry in the purchases or sales profile is equally likely to be part of more than one cluster that 

it is the case for a sale profile. 

At the cost of loss of information, if we force each sector to belong to the set in which it 

holds the highest membership and look for the closest neighbor to that set; we can obtain a 

"forced" classification as shown in table 3. 

 
<< insert table 3 here >> 

 
Even though the forced classification is not precise since it is based only on the highest 

fuzzy membership that assigns each industry to a single cluster, table 3 shows that the cluster 

pattern obtained from the "forced" classification is very different from the results obtained using 

the Ward algorithm. Indeed, industries 1, 3, 5, 7, 11, 15, 17, and 27 in the sales profile are similar 

since they have the same closest crisp set and the closest neighbor to that set, this is not 

confirmed by the results from Ward's algorithm in table A.2, were only industries 1, 2, and 3 are 

similar as they belong to the same cluster.  Tables 4 and 5 show that even by disregarding details 

regarding the membership values provided, the combination of just two clusters offers more 
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diversity in describing the clusters in the economy.  In table 4 for the sales profile, 6 industries 

have as second closest neighbor the row cluster number 8, however those industries cannot be 

considered similar since their first closest neighbors are different. 

In tables A.3 and A.4, it is easy to check for the complementation property, for add-up 

( )
4

1
1;

iA
i

x x Xµ
=

= ∀ ∈∑ , and for the absence of strict inclusion in all sets.  Unlike the equality 

between fuzzy sets, the existence of inclusion raises issues of redundancy of the inner set or 

subset, that efficient algorithms are expected to avoid producing when dealing with fuzzy cluster 

analysis.  If a set j iA A⊂  then only the cluster iA  should be considered and jA  is redundant and 

therefore should not emerge as a cluster and that is what the algorithm is doing.  The intersection 

operation presents attractive features, such as the detection or a crude indicator of particular 

sectors in sales and purchases profiles.  Because fuzzy memberships are defined on a continuum, 

the intersection and union operations on fuzzy sets allow assessing the industries’ global 

importance in the whole economy and their local importance in particular clusters. 

In figure 5, we provide a graphic representation of the intersection and union membership 

functions for the sales and purchases profiles for the US (from table A.4).  The intersection 

operator indicates the degree of importance of a given industry to the overlap between clusters 

while the union operator indicates the importance of a given industry to all clusters.  Figure 5.a 

reveals that for the sales profiles, industry 19, 'Ship building & Repairing', compared to the rest 

of the industries is more important to clusters overlap than it is important to all the industries in 

tandem (fig. 5.b), therefore we can say that industry 19 is locally important and globally 

unimportant.  The rest of the industries seem to have close membership values in their 

belongingness to either of the intersection or the union of the fuzzy sets.  It should be expected 

that industries having particularly low membership values for the fuzzy intersection of sets 
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would have particularly high membership values for the fuzzy union of sets, this is because of 

the difference between the {}min .  and the {}max .  functions when the membership values for a 

given industry are not constant or close across clusters. 

 
<< insert figure 5 here >> 

 
 For this particular dataset, it seems that there is alternation in the local and global 

importance of industries.  It can be argued that odd numbered industries, which for the most are 

extraction or production of "raw" or "semi-finished" products, are locally important.  Indeed a 

close look at the industry description (table A.1 in the appendix) shows that almost all locally 

important industries are followed by industries that produce a more "refined" or "finished" 

specific product, which are important to all clusters simultaneously.  The pattern of alternation is 

of course tributary to the level of aggregation; for the case at hand the patterns ceases starting 

from industry 29 and the rest of the service industries. 

 It seems clear from the above comparison of fuzzy and crisp clusters that in addition to 

allowing the portrayal of relative importance of industries, the fuzzy clusters method allows for a 

better description of the existing clusters and the relation between clusters while the crisp 

clusters missed on detecting certain patterns of similarities between industries.  By overlooking 

certain similarities between clusters, however weak they might be, crisp clustering ended up by 

putting most industries in one or two clusters (Table 1) and since an industry is forced to belong 

to one and only one cluster therefore the linkages between clusters are also overlooked.  

Although here we used only a 33-by-33 input-output table, fuzzy methods of cluster analysis can 

be safely used on large input-output data to unmask finer structures of similarities between 
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industries and their relative importance, thing that crisp cluster analysis seems to fail to fully 

extract. 

 Unlike the binary value that the membership function in crisp clusters takes, continuous 

fuzzy membership allows for a larger number of operations and methods to extract information 

about the cluster and the industries composing it that goes beyond the simplistic observation that 

a cluster belongs or does not belong to a certain cluster.  In addition, fuzzy clusters by their 

nature allow accounting for "spillovers" between industries, which for Porter (1998b) matter in 

the determination of the cluster boundaries.  Porter (1998b) argues that "cluster boundaries 

should encompass all firms, industries, and institutions with strong linkages, whether vertical, 

horizontal, or institutional; those with weak or non-existent linkages can safely be left out".  

However, in this paper we showed that the arbitrary decision on what to include and what not to 

include in a cluster is no more a concern if low membership values are assigned to industries 

with weak similarities with other industries in a cluster. 

 

4 CONCLUSION 

Pattern identification and object classification are important and necessary steps to make 

a wealth of information useful for further analysis.  Identifying similarities between industries is 

of importance to policy makers involved in regional development programs.  Porter (1990) view 

clusters formation as a source of national advantages.  Clusters formation and development can 

be achieved by various means such as the enlargement of existing clusters through the inclusion 

of new firms, private leadership, and technological leaps (Bekar and Lipsey, 2001).  However, in 

most cases clusters emerge naturally, only then can government policies contribute to their 

growth, thus making the identification of clusters even more important for policy makers and 

private initiative. 
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Interest in industrial crisp cluster analysis based on input-output data decreased in the 

1980s because of their limited ability to fully capture all the relationship that exist between 

industries.  In using fuzzy cluster analysis, we hope to provide not only better ways to identify 

interindustry similarities but also to move toward a quantification of those clusters that goes 

beyond the binary notion of industries classification.  Fuzzy sets theory, offers an alternative 

approach for cluster analysis not based on information concepts such as those proposed by Theil 

(1967) and Theil and Uribe (1967) but rather on the between-sector variance derived using dual 

scaling (Nishisato, 1980, 1994).  While in this paper we relied on input-output data to derive 

fuzzy industrial clusters, any multivariate description of industries in terms of labor, investement 

and other variables can be used to accomplish that. 

In this paper, we compared crisp cluster methods such as the agglomerative method 

proposed by Ward (1963) with fuzzy cluster methods and showed that crisp clusters are 

incapable to detect significant diversities between clusters of profiles that are functionally and 

structurally different, in addition, most industries were for the most part classified in a single 

cluster.  We also showed how the membership values could be used for some elementary 

operations on cluster analysis. 

Further research is still required to study the composition of a given industry cluster and 

what the role played by each industry; this compels us to consider clusters as coalitions with the 

application of cooperative game theory tools such as the Shapley value and to measure the 

entropy of fuzzy clusters.  In the second paper in this series, the Shapley value and other fuzzy 

measures are introduced in the context of input-output based fuzzy cluster analysis. 
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Table 1: Crisp clusters cardinality 
Profiles Cluster 

Sales Purchases 
1 6 5 
2 2 7 
3 2 4 
4 3 4 
5 10 2 
6 1 2 
7 1 1 
8 1 1 
9 1 1 

10 1 1 
11 1 1 
12 1 1 
13 1 1 
14 1 1 
15 1 1 

Total 33 33 
 
 

Table 2: Dunn's index of fuzziness 

US 
 

Sales Profiles Purchases Profiles 
Objective 2.8103 2.4839 
Dunn's Coeff. 0.4261 0.4429 
Dunn's Norm. 0.3851 0.4031 
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Table 3: "Forced" classification of US fuzzy clusters 
 Sales Profile Purchases Profile 

Ind.  Closest Crisp Set Neighbor Closest Crisp Set Neighbor 
1 1 8 1 2 
2 2 14 2 15 
3 1 8 1 15 
4 3 8 3 15 
5 1 8 4 1 
6 4 8 5 11 
7 1 8 1 7 
8 5 14 6 15 
9 1 14 1 2 

10 6 8 7 5 
11 1 8 4 2 
12 7 8 8 2 
13 1 7 9 8 
14 8 6 9 8 
15 1 8 4 2 
16 9 10 10 13 
17 1 8 4 11 
18 10 8 11 13 
19 1 14 4 2 
20 11 7 12 8 
21 1 6 1 13 
22 12 10 13 11 
23 1 6 1 11 
24 13 8 14 2 
25 1 14 1 2 
26 14 15 4 2 
27 1 8 1 2 
28 15 14 15 2 
29 1 14 1 15 
30 1 14 1 2 
31 1 15 1 2 
32 1 14 1 2 
33 1 14 1 2 
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Table 4: Cluster combinations cardinality for industries in the sales profile: a forced 
classification 

Neighbor Set Closest Crisp 
Set R6 R7 R8 R10 R14 R15 

Total 

R1 2 1 8  7 1 19 
R2     1  1 
R3   1    1 
R4   1    1 
R5     1  1 
R6   1    1 
R7   1    1 
R8 1      1 
R9    1   1 
R10   1    1 
R11  1     1 
R12    1   1 
R13   1    1 
R14      1 1 
R15     1  1 
Total 3 2 14 2 10 2 33 

 

 

Table 5: Cluster combinations cardinality for industries in the purchases profile: a forced 
classification 

Neighbor Set Closest Crisp 
Set C1 C2 C5 C7 C8 C11 C13 C15 

Total 

C1  8  1  1 1 2 13 
C2        1 1 
C3        1 1 
C4 1 4    1   6 
C5      1   1 
C6        1 1 
C7   1      1 
C8  1       1 
C9     2    2 
C10       1  1 
C11       1  1 
C12     1    1 
C13      1   1 
C14  1       1 
C15  1       1 
Total 1 15 1 1 3 4 3 5 33 
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(a) Crisp clusters (b) Fuzzy clusters (c) Overlapping clusters 

Figure 1: Crisp, fuzzy, and overlapping classifications 

 

Figure 2: Dendogram of Ward's agglomerative clustering algorithm for the sales profile 
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Figure 3: Dendogram of Ward's agglomerative clustering algorithm for the purchases profile 
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(a) Sales profiles (b) Purchases profiles 
Figure 4: Banner plots 
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(c) Purchases profile cluster intersection (d) Purchases profile clusters union 

Figure 5: Intersection and Union operation on US fuzzy clusters 

 
APPENDIX 
 
Brief description of the dual scaling technique (Dridi and Hewings, 2002b) 

Nishisato (1980, 1994) presented the dual scaling technique as a method that applies to 

qualitative data arranged in a contingency table.  However, if we consider that the monetary 

values in an input-output table cells are an indicator of the frequency of exchanges between 

industries, then the use of the technical block of input-output tables constitutes a contingency 

table well suited for dual scaling technique.  In Dridi and Hewings (2002b) the interindustry 

flows where augmented by a row for the primary factors and a column for the final demands to 

represent a full input-output table as a contingency table, however as the level of aggregation 
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decreases negative values in the final demands column might appear if imports of final goods 

and services were too high.  Having negative values in a contingency table disqualifies the use of 

dual scaling as a tool to derive the rows and columns weights.  In order to avoid the problem we 

limit ourselves to the interindustry flows, this causes a loss of information by dropping the 

primary demands and final demand from the analysis however, the gain derived from a more 

detailed table would be more important in this case.  With 1,...,i r= , and 1,...,j c= , the size of 

the contingency table will be r rows by c columns: 

1,1 1, 1,

,1 , ,

,1 , ,

 

j c

i i j i c

r r j r c

f f f

f f f

f f f

 
 
 
 
 
 
 
 

        (a.1) 

 

Let ,i jf  be the monetary value of flows between industries i and j.  The approach of dual 

scaling consists in determining a vector of columns weight and a vector of rows weight to 

maximize the ratio 
t

b

SS
SS

=2η , with: 

( ) ( ), 1 1[ ]i j r cf + × +=F  ; the matrix of flows in an input-output table. 

rf    ; the vector of total outputs of the input-output table. 

cf    ; the vector of total inputs same as rf  for input-output. 

rD    ; the diagonal matrix with row totals in the main diagonal. 

cD    ; the diagonal matrix with column totals in the main diagonal 
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y    ; a vector of weights for the supplying sectors. 

x    ; a vector of weights for the demanding sectors. 

tf    ; the total value or intensity of the input-output table. 

and FxDFx 1'' −= rbSS  expresses the variation between the rows of F  and xDx ctSS '=  expresses 

the total variation in the full input-output table. 

One way to maximize 
t

b

SS
SS

=2η , is to set tt fSS =  and to maximize bSS .  The Lagrangian 

function of the problem will be: 

)'(''),( 1
tcr fL −−= − xDxFxDFxx λλ         (a.2) 

with first order conditions: 

0' 1 =−=
∂
∂ − xDFxDF

x cr
L λ          (a.3) 

0' =−=
∂
∂

tc fL xDx
λ

          (a.4) 

If we pre-multiply (a.3) by 'x  and rearrange, we get: 

2
1

'
''

ηλ ==
−

xDx
FxDFx

c

r           (a.5) 

The Lagrangian multiplier is nothing but the squared correlation ratio, 2η .  Equation (a.3) can be 

rewritten into: 

( ) 0' 1 =−− xDFDF 2
cr η          (a.6) 

which if pre-multiplied by 1−
cD  yields the eigenequation: 
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( ) 0' 11 =−−− xIFDFD 2ηrc          (a.7) 

Once the trivial5 solution of 2η  is excluded; an eigenvector x , associated with the 

highest value of 2η  is found from (a.7), y  can be found using the following dual relationship, 

which justifies the use of 'dual scaling' to label this approach: 

FxDy 11 −








= rη

          (a.8) 

At this level, we obtain what is referred to as the first solution with a percentage of total 

information explained of 
2
1

1 2

100

i
i

η
δ

η
=
∑

.  Nishisato (1994) offers a different formulation to 1δ , but 

it provides the same result since every eigenvalue explains part of the association and the sum of 

the non-trivial eigenvalues exhausts all the association.  If the first solution is judged insufficient 

to explain the correlation between rows and columns then a second or more solutions can be 

found by calculating the associated eigenvector x, and the vector y, by taking decreasing non-

trivial eigenvalues6.  In a general contingency r-by-c table, the number of possible non-trivial 

solutions is min( 1, 1)s r c= − − . 

 We mentioned earlier that the maximum number of solutions we can find is 

min( 1, 1)r c− − , and since the number of rows and columns in an input-output table are equal, 

then the number of solutions is simply 1r −  or 1c − , the size of the technical block matrix in an 

input-output system. 

The application of the above technique to extract the s solutions of the rows and columns 

of the input-output table or the contingency table in general provides two matrices, the first of 



Toward a Quantitative Analysis of Industrial Clusters I 

 29

which holds the s weights for the columns and its dimensions are c s× , while the second matrix 

holds the s weights or solutions for the rows and its dimension is r s× .  With 1,...,k s= , the 

horizontal concatenation of the column and the row solutions produce respectively the following 

matrices; matrix X of weights for the columns, and the matrix Y of weights for the rows having 

the following configurations: 

1,1 1, 1,

,1 , ,

,1 , ,

 

k s

j j k j s

c c k c s

x x x

x x x

x x x

 
 
 
 =
 
 
 
 

X         (a.9) 

1,1 1, 1,

,1 , ,

,1 , ,

 

k s

i i k i s

r r k r s

y y y

y y y

y y y

 
 
 
 =
 
 
 
 

Y         (a.10) 

 

The matrices X and Y can be used to compute the inter-rows and inter-columns Euclidian 

distances in the space of dimension s. 

( )2
, , ,

1

s

i i i k i k
k

d y y′ ′
=

= −∑       ; 1,...,i r∀ = ; 1,...,i r′∀ =  (a.11) 

( )2

, , ,
1

s

j j j k j k
k

d x x′ ′
=

= −∑       ; 1,...,j c∀ = ; 1,...,j c′∀ =  (a.12) 

 

                                                                                                                                                                                           
5 Trivial because it assigns the same weight to all elements of x, which prevents any further analysis. 
6  For our purpose we extract all possible solutions. 
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Tables 
 

Table A.1: Input-output aggregation for the US economy 

Ind. Description 
1 Agriculture, forestry & fishing 
2 Mining & quarrying 
3 Food, beverages & tobacco 
4 Textiles, apparel & leather 
5 Wood products & furniture 
6 Paper, paper products & printing 
7 Industrial chemicals 
8 Drugs & medicines 
9 Petroleum & coal products 

10 Rubber & plastic products 
11 Non-metallic mineral products 
12 Iron & steel 
13 Non-ferrous metals 
14 Metal products 
15 Non-electrical machinery 
16 Office & computing machinery 
17 Electrical apparatus, nec 
18 Radio, TV & communication equipment 
19 Shipbuilding & repairing 
20 Other transport 
21 Motor vehicles 
22 Aircraft 
23 Professional goods 
24 Other manufacturing 
25 Electricity, gas & water 
26 Construction 
27 Wholesale & retail trade 
28 Restaurants & hotels 
29 Transport & storage 
30 Communication 
31 Finance & insurance 
32 Real estate & business services 
33 Community, social & personal services 
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Table A.2: Fifteen crisp clusters for row and column profiles 
Ind. Row Cluster Col. Cluster 

1 4 3 
2 4 2 
3 4 3 
4 6 4 
5 7 7 
6 5 1 
7 1 6 
8 8 8 
9 5 3 

10 1 6 
11 1 9 
12 3 5 
13 3 10 
14 1 5 
15 1 4 
16 9 11 
17 1 4 
18 2 1 
19 10 12 
20 11 13 
21 12 1 
22 13 1 
23 2 1 
24 14 14 
25 5 2 
26 5 4 
27 5 2 
28 5 3 
29 5 2 
30 5 15 
31 15 2 
32 5 2 
33 5 2 
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Table A.3: Fuzzy clusters for the sales profile 
  R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 
Ind. 1 0.1321 0.0774 0.0665 0.0744 0.0482 0.0750 0.0641 0.0843 0.0396 0.0633 0.0307 0.0489 0.0466 0.0770 0.0719
Ind. 2 0.0077 0.9422 0.0040 0.0048 0.0032 0.0046 0.0040 0.0050 0.0025 0.0040 0.0020 0.0031 0.0030 0.0051 0.0047
Ind. 3 0.1276 0.0752 0.0664 0.0729 0.0515 0.0742 0.0672 0.0810 0.0402 0.0639 0.0331 0.0491 0.0486 0.0777 0.0715
Ind. 4 0.0048 0.0031 0.9589 0.0030 0.0022 0.0032 0.0034 0.0037 0.0020 0.0031 0.0015 0.0024 0.0022 0.0033 0.0031
Ind. 5 0.1077 0.0666 0.0636 0.0735 0.0538 0.0753 0.0680 0.0936 0.0457 0.0684 0.0373 0.0558 0.0513 0.0708 0.0686
Ind. 6 0.0108 0.0059 0.0047 0.9231 0.0041 0.0064 0.0050 0.0069 0.0032 0.0060 0.0025 0.0042 0.0039 0.0067 0.0066
Ind. 7 0.1314 0.0703 0.0559 0.0795 0.0510 0.0825 0.0627 0.0864 0.0407 0.0657 0.0308 0.0518 0.0468 0.0727 0.0717
Ind. 8 0.0019 0.0014 0.0012 0.0015 0.9813 0.0014 0.0013 0.0015 0.0010 0.0014 0.0007 0.0012 0.0011 0.0017 0.0015
Ind. 9 0.1523 0.0777 0.0580 0.0736 0.0464 0.0689 0.0590 0.0801 0.0367 0.0641 0.0308 0.0465 0.0443 0.0857 0.0757
Ind. 10 0.0102 0.0054 0.0050 0.0063 0.0039 0.9252 0.0055 0.0070 0.0033 0.0057 0.0025 0.0043 0.0035 0.0061 0.0060
Ind. 11 0.1225 0.0681 0.0630 0.0736 0.0481 0.0779 0.0629 0.0991 0.0428 0.0669 0.0336 0.0529 0.0486 0.0693 0.0709
Ind. 12 0.0059 0.0034 0.0039 0.0035 0.0027 0.0039 0.9508 0.0046 0.0023 0.0039 0.0020 0.0029 0.0026 0.0039 0.0037
Ind. 13 0.1023 0.0660 0.0726 0.0661 0.0513 0.0700 0.0894 0.0796 0.0466 0.0704 0.0356 0.0540 0.0525 0.0739 0.0698
Ind. 14 0.0177 0.0083 0.0080 0.0093 0.0057 0.0098 0.0090 0.8849 0.0048 0.0089 0.0036 0.0062 0.0057 0.0093 0.0089
Ind. 15 0.1352 0.0647 0.0663 0.0706 0.0446 0.0732 0.0692 0.0954 0.0404 0.0701 0.0285 0.0515 0.0459 0.0742 0.0703
Ind. 16 0.0010 0.0007 0.0008 0.0008 0.0007 0.0008 0.0008 0.0008 0.9892 0.0009 0.0005 0.0008 0.0007 0.0008 0.0008
Ind. 17 0.1258 0.0644 0.0667 0.0700 0.0468 0.0785 0.0673 0.0900 0.0429 0.0711 0.0299 0.0541 0.0469 0.0750 0.0707
Ind. 18 0.0072 0.0039 0.0040 0.0048 0.0031 0.0046 0.0044 0.0051 0.0028 0.9421 0.0020 0.0037 0.0030 0.0047 0.0046
Ind. 19 0.0773 0.0670 0.0665 0.0676 0.0648 0.0672 0.0671 0.0674 0.0620 0.0675 0.0629 0.0644 0.0651 0.0684 0.0646
Ind. 20 0.0004 0.0003 0.0003 0.0003 0.0003 0.0003 0.0004 0.0003 0.0003 0.0003 0.9954 0.0003 0.0003 0.0003 0.0003
Ind. 21 0.1028 0.0648 0.0697 0.0701 0.0526 0.0764 0.0686 0.0764 0.0501 0.0758 0.0365 0.0677 0.0504 0.0693 0.0687
Ind. 22 0.0024 0.0016 0.0016 0.0017 0.0013 0.0018 0.0016 0.0019 0.0013 0.0019 0.0009 0.9773 0.0013 0.0017 0.0017
Ind. 23 0.1210 0.0647 0.0605 0.0765 0.0507 0.0767 0.0646 0.0775 0.0436 0.0725 0.0315 0.0566 0.0502 0.0775 0.0759
Ind. 24 0.0017 0.0012 0.0012 0.0013 0.0010 0.0012 0.0012 0.0014 0.0009 0.0012 0.0007 0.0010 0.9833 0.0013 0.0013
Ind. 25 0.1527 0.0714 0.0583 0.0744 0.0460 0.0718 0.0625 0.0784 0.0369 0.0652 0.0295 0.0464 0.0438 0.0874 0.0753
Ind. 26 0.0155 0.0077 0.0065 0.0082 0.0061 0.0077 0.0068 0.0085 0.0042 0.0074 0.0033 0.0053 0.0050 0.8989 0.0091
Ind. 27 0.1948 0.0634 0.0551 0.0745 0.0396 0.0707 0.0596 0.0960 0.0316 0.0633 0.0238 0.0419 0.0383 0.0776 0.0699
Ind. 28 0.0112 0.0058 0.0051 0.0068 0.0042 0.0064 0.0054 0.0067 0.0035 0.0060 0.0026 0.0043 0.0040 0.0075 0.9204
Ind. 29 0.1696 0.0667 0.0552 0.0728 0.0438 0.0721 0.0583 0.0819 0.0343 0.0646 0.0293 0.0441 0.0413 0.0873 0.0787
Ind. 30 0.1572 0.0667 0.0558 0.0788 0.0467 0.0708 0.0588 0.0754 0.0373 0.0669 0.0281 0.0472 0.0438 0.0889 0.0776
Ind. 31 0.1229 0.0713 0.0590 0.0769 0.0504 0.0705 0.0616 0.0770 0.0456 0.0694 0.0334 0.0551 0.0497 0.0789 0.0784
Ind. 32 0.2078 0.0616 0.0497 0.0729 0.0405 0.0652 0.0530 0.0774 0.0310 0.0610 0.0226 0.0402 0.0375 0.0964 0.0832
Ind. 33 0.1827 0.0637 0.0531 0.0733 0.0426 0.0676 0.0575 0.0768 0.0335 0.0637 0.0251 0.0434 0.0419 0.0925 0.0825
Card 2.7241 2.2825 2.1671 2.3676 1.9391 2.3618 2.2210 2.5121 1.8029 2.2665 1.6331 1.9888 1.9131 2.4516 2.3687
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Table A.4: Fuzzy clusters for the purchases profile 
  C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 
Ind. 1 0.0940 0.0774 0.0706 0.0871 0.0686 0.0530 0.0606 0.0642 0.0623 0.0497 0.0649 0.0498 0.0644 0.0586 0.0748
Ind. 2 0.0081 0.9262 0.0053 0.0070 0.0054 0.0041 0.0046 0.0053 0.0050 0.0040 0.0053 0.0040 0.0053 0.0045 0.0060
Ind. 3 0.1001 0.0762 0.0701 0.0894 0.0695 0.0505 0.0571 0.0644 0.0601 0.0458 0.0637 0.0481 0.0618 0.0552 0.0879
Ind. 4 0.0045 0.0039 0.9511 0.0044 0.0033 0.0027 0.0029 0.0037 0.0037 0.0028 0.0036 0.0029 0.0035 0.0031 0.0039
Ind. 5 0.0821 0.0682 0.0664 0.0908 0.0687 0.0567 0.0629 0.0670 0.0672 0.0529 0.0674 0.0584 0.0661 0.0602 0.0652
Ind. 6 0.0056 0.0043 0.0036 0.0050 0.9458 0.0033 0.0037 0.0036 0.0034 0.0029 0.0043 0.0029 0.0040 0.0035 0.0042
Ind. 7 0.0922 0.0731 0.0590 0.0875 0.0736 0.0568 0.0769 0.0629 0.0575 0.0502 0.0653 0.0504 0.0658 0.0593 0.0696
Ind. 8 0.0022 0.0018 0.0016 0.0020 0.0018 0.9760 0.0017 0.0017 0.0017 0.0014 0.0017 0.0013 0.0017 0.0015 0.0019
Ind. 9 0.0892 0.0825 0.0681 0.0816 0.0710 0.0560 0.0600 0.0662 0.0615 0.0503 0.0643 0.0504 0.0637 0.0589 0.0765
Ind. 10 0.0030 0.0026 0.0023 0.0030 0.0026 0.0022 0.9663 0.0023 0.0022 0.0020 0.0024 0.0020 0.0025 0.0022 0.0025
Ind. 11 0.0868 0.0746 0.0651 0.0881 0.0713 0.0545 0.0652 0.0607 0.0609 0.0528 0.0667 0.0569 0.0663 0.0588 0.0714
Ind. 12 0.0043 0.0037 0.0035 0.0040 0.0031 0.0026 0.0028 0.9531 0.0040 0.0026 0.0034 0.0032 0.0033 0.0030 0.0036
Ind. 13 0.0777 0.0727 0.0729 0.0741 0.0627 0.0545 0.0578 0.0750 0.0818 0.0547 0.0677 0.0525 0.0646 0.0643 0.0669
Ind. 14 0.0037 0.0032 0.0033 0.0035 0.0028 0.0024 0.0026 0.0037 0.9573 0.0024 0.0032 0.0029 0.0030 0.0028 0.0032
Ind. 15 0.0886 0.0744 0.0720 0.0922 0.0638 0.0491 0.0557 0.0677 0.0687 0.0510 0.0700 0.0492 0.0681 0.0578 0.0717
Ind. 16 0.0018 0.0016 0.0015 0.0017 0.0014 0.0013 0.0014 0.0015 0.0015 0.9787 0.0017 0.0013 0.0018 0.0014 0.0015
Ind. 17 0.0861 0.0711 0.0696 0.0861 0.0650 0.0516 0.0613 0.0696 0.0677 0.0529 0.0724 0.0507 0.0687 0.0586 0.0687
Ind. 18 0.0052 0.0041 0.0038 0.0049 0.0042 0.0030 0.0032 0.0038 0.0039 0.0033 0.9456 0.0032 0.0044 0.0034 0.0040
Ind. 19 0.0754 0.0749 0.0687 0.0782 0.0673 0.0600 0.0611 0.0592 0.0687 0.0593 0.0669 0.0573 0.0685 0.0647 0.0699
Ind. 20 0.0017 0.0016 0.0016 0.0019 0.0015 0.0012 0.0014 0.0018 0.0018 0.0013 0.0017 0.9779 0.0016 0.0014 0.0017
Ind. 21 0.0836 0.0688 0.0728 0.0792 0.0656 0.0521 0.0600 0.0642 0.0619 0.0581 0.0735 0.0554 0.0818 0.0570 0.0661
Ind. 22 0.0050 0.0039 0.0036 0.0046 0.0037 0.0029 0.0033 0.0035 0.0035 0.0034 0.0043 0.0029 0.9485 0.0032 0.0037
Ind. 23 0.0913 0.0727 0.0645 0.0840 0.0700 0.0534 0.0619 0.0648 0.0621 0.0529 0.0720 0.0508 0.0704 0.0599 0.0693
Ind. 24 0.0029 0.0024 0.0023 0.0027 0.0024 0.0018 0.0020 0.0023 0.0023 0.0018 0.0023 0.0019 0.0023 0.9681 0.0024
Ind. 25 0.1030 0.0816 0.0656 0.0808 0.0685 0.0530 0.0569 0.0664 0.0598 0.0489 0.0650 0.0532 0.0634 0.0560 0.0778
Ind. 26 0.0120 0.0092 0.0078 0.8926 0.0083 0.0058 0.0068 0.0075 0.0071 0.0056 0.0082 0.0060 0.0080 0.0067 0.0084
Ind. 27 0.1560 0.0805 0.0585 0.0860 0.0678 0.0473 0.0508 0.0579 0.0554 0.0443 0.0645 0.0440 0.0626 0.0517 0.0726
Ind. 28 0.0072 0.0055 0.0049 0.0059 0.0048 0.0039 0.0040 0.0048 0.0046 0.0035 0.0047 0.0038 0.0046 0.0041 0.9336
Ind. 29 0.1078 0.0749 0.0633 0.0844 0.0666 0.0533 0.0562 0.0632 0.0594 0.0490 0.0680 0.0581 0.0645 0.0562 0.0751
Ind. 30 0.0914 0.0765 0.0644 0.0773 0.0690 0.0582 0.0591 0.0657 0.0618 0.0548 0.0693 0.0546 0.0675 0.0588 0.0715
Ind. 31 0.0937 0.0760 0.0620 0.0814 0.0716 0.0555 0.0596 0.0624 0.0601 0.0559 0.0688 0.0511 0.0701 0.0589 0.0729
Ind. 32 0.1594 0.0758 0.0584 0.0828 0.0672 0.0532 0.0503 0.0582 0.0556 0.0453 0.0640 0.0428 0.0629 0.0521 0.0719
Ind. 33 0.8222 0.0163 0.0122 0.0185 0.0143 0.0100 0.0107 0.0125 0.0115 0.0091 0.0137 0.0086 0.0134 0.0109 0.0159
Card 2.6480 2.3423 2.2003 2.4724 2.2334 1.9921 2.0909 2.1707 2.1460 1.9533 2.2204 1.9584 2.2089 2.0669 2.2961

 


