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Abstract  

 

A regulator faces an environmental problem because of the polluting activity of firms. The latter can 

adopt a new and less polluting production technology by spending an actualized investment cost 

decreasing exponentially with the adoption date. When firms adopt the cleaner technology, they 

produce more, pollute less, pay fewer emission taxes and as consequences have greater profit and the 

social welfare is higher. If the cost of the immediate adoption of the cleaner technology is relatively high 

and the environmental taxation scheme is well designed, firms will adopt it at finite but different dates 

even though the model is symmetric and there is no informational asymmetry. Moreover, we show that 

technological diffusion is socially optimal. The social adoption date of the first innovator is earlier than 

the private one whereas, the contrary occurs with the second innovator. Subsidies may be used to induce 

the socially-optimal adoption dates. 
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1. Introduction 

 

This paper tries to answer the question of how to induce firms to adopt less 

polluting technologies, to characterize this adoption process and compare it to the 

socially optimal one. Our solution consists of introducing an adequate 

environmental tax.  

Milliman and Prince (1989) have evaluated the incentive effects of five 

environmental policy instruments (emission taxes, subsidies, auctioned permits, 

issued marketable permits and performance standards) to promote the development 

and adoption of advanced pollution abatement technology. They support the view 

that taxes and auctioned permits are the most effective policy instruments. Jung, 

Krutilla and Boyd (1996) have extended this comparative approach to the industry 

level.  

Farzin and Kort (2000) examine the effect of a higher pollution tax rate on 

abatement investment, both under full certainty and when the timing or the size of 

the tax increase is uncertain. They show the possibility that a higher pollution tax 

rate induces more pollution and that a credible threat to accelerate the tax increase 

can lead to a more abatement investment. Stranlund (1997) considers public aid to 

encourage the adoption of superior emission-control technologies combined with 

monitoring. This strategy is interesting when monitoring is difficult because the 

sources of pollution are widely dispersed or when emissions are not easily 

measured as in non-point pollution problems. Technological aid reduces the direct 

enforcement effort necessary for firms to reach the compliance goal. Consequently, 

firms adopt better technologies, which serve to promote further innovative activity.  

 To bridge the gap between the private switching time and the socially desirable 

one, Dosi and Moretto (1997) recommend that regulators should focus on the sources 

of technological inertia so as to increase the private opportunity cost of postponing 

potentially-profitable-environmental innovations. Dosi and Moretto (2000) examine 

the implications of the sources of inertia on the design of public incentives aimed at 
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accelerating adoption of cleaner technologies when the policy-maker is imperfectly 

informed on the private switching costs. 

The diffusion of a new technology has been analyzed by Reinganum (1981). She 

considers an industry composed of two firms which can adopt a cost reducing 

technology within a time t. She shows that even in the case of identical firms and 

complete information there is diffusion of innovation over time because one firm 

innovates before the other and gains more. She has assumed that the payoff functions 

of firms are globally concave in their arguments. Besides, these functions are not 

differentiable when adoption is simultaneous (i.e. at T T1 2= , see Reinganum (1981) 

page 397). Fudenberg and Tirole (1985) make less strong condition on the payoffs of 

firms to obtain quasiconcavity. They show that under certain conditions, there is 

diffusion whereas under others, firms adopt this new technology simultaneously. 

Hoppe (2000) extends the work of Fudenberg and Tirole to include uncertainty 

regarding the profitability of a new technology. She shows that there may be second-

mover advantages because of informational spillovers. Dutta et al. (1995) get a 

similar result in a context where the later innovator continues to develop the 

technology and eventually markets a higher-quality good. 

The impact of adoption timing on social welfare has been studied by some 

authors. Riordan (1992) shows that price and entry regulations, in many cases,  

beneficially slow down technology adoption and, in some other cases, change the 

order in which firms adopt new technologies by speeding up one firm’s adoption 

date and slowing down the other’s. Stoneman and Diederen (1994) conjecture that 

’diffusion policy should not proceed upon a presumption that faster is always better’ 

(p.929). A partial welfare analysis, made by Hoppe, reveals several market failures1 

and suggests that policy intervention should adequately depend on the nature of 

uncertainty and the rate of technological progress.   

 This paper is an extension of the work of Carraro and Topa (1991). It differs from 

the existing literature mainly by the fact that we study diffusion within a framework 

where firms adopt the new technology for reducing pollution. Moreover, we 
                                                                 
1
 She prove normative conclusions (Propositions 4 and 5) about sufficiently small changes of the equilibrium 

adoption dates, which show that the equilibrium adoption behavior tends to diverge from the social optimum. 
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completely characterize the socially optimal adoption process and compare it to the 

private one.  

The  most important differences of this model from that of Carraro and Topa are 

the function ρ(t), which represents the actualized cost of adopting a less polluting 

technology by a firm at time t, and the intertemporal payoffs of firms and regulator. 

This function ρ makes the intertemporal  objective functions of firms and regulator 

locally concave with respect to their arguments (i.e. supposes a weaker condition).  

The symmetric model we consider consists of two firms located in a given country. 

Firms produce the same good sold on the market. A by-product of the production 

process is pollution. These firms can adopt a new, less polluting technology at date t 

by incurring an actualized investment cost ρ(t) which decreases exponentially. In 

order to induce his firms to adopt the cleaner technology, the regulator taxes the 

emission of pollution. The regulator and firms maximize their intertemporal 

objective functions which take into account the cost of innovation. Our main interest 

is the case where the cost of immediate innovation (i.e. at date 0) is relatively high. 

The regulator tries to induce firms to use the new technology because this implies 

greater social welfare. Indeed, firms produce more, pollute less, pay less 

environmental tax and have a higher profit than with the old (more polluting) 

technology. The regulator chooses the optimal tax parameter by maximizing the 

intertemporal social welfare. As a reaction, firms choose their optimal adoption 

dates by maximizing their intertemporal payoffs. We show that if the tax is well 

chosen, firms will adopt the cleaner innovation at different dates (diffusion). This is 

because each firm tries to have a competitive advantage by being the first innovator 

(which implies fewer emission taxes than the other non-innovating firm). We 

establish that technological diffusion is, in fact, socially optimal because the 

regulator prefers that the community supports only one investment cost in cleaner 

technology for a certain period until it decreases sufficiently. Though the social 

adoption date of the first innovator is earlier than the private one, the opposite 

happens for the second innovator2. Therefore, the regulator can give subsidies to 

firms so that they innovate at the socially appropriate dates. 

                                                                 
2
 This important result is contrary to the one established by Carraro and Topa (Theorem 3). 
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The model is introduced in section 2. Section 3 analyzes the innovation game 

between firms given the taxation scheme introduced. Section 4 studies the 

regulator’s optimal strategy and section 5 concludes.  

 

2. The model 

 

We consider two identical firms competing by quantities on a market where they 

offer the same good. The production process generates pollution (for example, 

sulfur dioxide SO2 ). The regulator has decided to tax emission of pollution in order 

to protect the environment.  

 Before any environmental regulation is introduced, firms produce output using a 

single-product technology D characterized by a fixed emission/output ratio k. Thus, 

polluting emissions xi  are a linear function of firm i’s output q i : xi = k qi , k>0. If no 

environmental taxation is introduced, firms adopt technology D. 

 The marginal cost of production is c>0. No pollution abatement is possible with 

technology D: firms can reduce pollution only by reducing output. However, firms 

can adopt a new and more flexible technology F, characterized by abatement 

possibilities and a lower emission/output ratio.  

 The new technology F is a multiple-product technology that enables firms to 

produce an abatement good a i  jointly with output q i . Firm i’s residual emissions 

are x kq ai i i= − . Hence, the new emission/output ratio k’ is k kq a q ki i i i' ( ) /= − ≤ . 

The unit abatement cost d’ is set equal to d/k>0 (i.e. d=kd’>0). Because of this unit 

cost, pollution is not totally absorbed. Total abatement and emissions are A a a= +1 2  

and X x x= +1 2 , respectively.  

Damages M(X) caused to the environment are a convex function of total emissions 

X : 

M(X)=λ X 2  

λ>0 increases with the sensitivity of consumers to the environment. 

When the regulator introduces an emission tax, firms could be induced to invest in 

R&D in order to adopt the cleaner technology. In this case, each firm chooses the date 
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at which the innovation will be available, and for each time period the abatement 

level a i , and output q i . Without loss of generality, we suppose that the regulator 

announces the emission tax parameter at time 0. Firms react by being engaged in the 

innovation game, in which each one decides whether to innovate or not, and at what 

date. 

Each firm is asked to pay a tax t(X) per unit of residual emission which is 

positively correlated to total emissions. Therefore, t(X)=vX, where the parameter v>0 

is chosen by the regulator, and the tax paid by firm i is T x X vXxi i i( , ) = . 

The inverse demand function for output is3 : 

P(Q) = α  - βQ  where Q = q q1 2+ , α  > c + 3d and β > 0                          (1) 

Firms can adopt the new technology within a period t from the beginning of the 

research by spending an actualized monetary amount ρ(t). This investment cost 

could comprise the R&D cost and/or the cost of acquisition and installation of the 

new technology. Thus, we will use the terms innovation and adoption 

interchangeably. Function ρ is decreasing because of the existence of freely-available 

scientific research allowing firms to reduce the cost of innovation when they delay its 

adoption, and is convex because  the innovation cost increases more rapidly as firms 

try to accelerate the date of adoption.  

 We model the cost of adopting the new technology at time t actualized at date 0 

as4 : 

ρ( ) , ,t be b mmrt= > >− 0 1 , r > 0 is the discount rate                           (2) 

                                                                 
3
 The restriction α>c+3d is necessary for the tax parameter to be inferior to a positive value (see (A2) in Appendix 

1). 
4
 Carraro and Topa impose a strong condition on the function ρ making the intertemporal objective functions of 

firms globally concave with respect to their argument. This too strong condition is expressed in A.C (d) (page 19) 

and does not make it possible to prove the adoption by firms of the new, less polluting technology within a finite 

time unless the limits calculated (pages 20 and 33) are incorrect. They also assume, but do not prove, that firms 

adopt the new technology at different dates as shown by the expressions defining the intertemporal objective 

functions of firms and the regulator, which are not differentiable inτ τ1 2= (page 19 and expression (13)). More 

precisely, they have ignored our expressions (11) and (17). Function ρ that we propose in this paper makes the 

intertemporal objective functions of firms and the regulator locally concave with respect to their arguments (i.e. 

we suppose a less strong condition).  
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For any v verifying conditions (A1) and (A2) (see Appendix 1), we need  b, m and r 

be such as: 

W W

mr
bFD

t
DD
t−

≤                                                          (3) 

where WFD
t  (resp. WDD

t ) is the instantaneous social welfare under an environmental 

tax and when only one firm has innovated (resp. no firm has innovated). Since the tax 

parameter v, verifying conditions (A1) and (A2), is minored and majored by strictly  

positive numbers, then W WFD
t

DD
t− (given by (A12) in Appendix 4) is majored by a 

strictly positive number independent of v. Therefore, by choosing mr sufficiently 

high, inequality (3) is feasible.   

Inequality (3) means that the cost of instantaneous innovation (ρ(0)=b) is relatively 

high. For it to be fulfilled when we decrease r to zero, we increase m so that mr 

remains constant. In so doing, function ρ(t) does not change. The cost of innovation 

decreases more rapidly as m is greater. 

Firms autonomously decide on their date of adoption of the cleaner technology at 

the beginning of the innovation game (date 0), and there is nothing in the model, 

such as informational externalities, that can incite them to change their strategy later 

(i.e. open-loop strategies). 

If both firms use technology D, even in the presence of the emission tax , we have : 

[ ] [ ]Π i i j i i i j iq q q c vkX q vk q q c q= − + − + = − + + −α β α β( ) ( ) ( )( )2          (4)                  

   i ≠ j , i , j = 1 , 2 

 In the absence of the emission tax, the above expression is valid by setting v= 0. 

 If both firms adopt the new technology F after the introduction of the tax: 

[ ]
[ ] [ ]

Π i i j i i i i i

i j i j i i j i j i

q q q vX kq a cq d k a

vk q q vk a a c q vk q q v a a d k a

= − + − − − −

= − + + + + − + + − + −

α β

α β

( ) ( ) / .

( )( ) ( ) ( ) ( ) /2
(5) 

i ≠ j , i , j = 1 ,2 

 Finally, we consider the case in which one of the two firms (for example, firm 2) 

has innovated, whereas the other still produces using technology D: 

[ ] [ ]Π 1 1 2 1 1 1
2

1 2 2 1= − + − − = − + + + −α β α β( ) ( )( )q q q cq vkXq vk q q vka c q        (6)                                
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[ ]
[ ] [ ]

Π 2 1 2 2 2 2 2 2

2
1 2 2 2 1 2 2 2

= − + − − − −

= − + + + − + + − −

α β

α β

( ) ( ) / .

( )( ) ( ) /

q q q vX kq a cq d k a

vk q q vka c q vk q q va d k a
             (7) 

 Following the background induction principle, first, we solve the game between 

firms in the second stage given the taxation scheme. Then, we analyze the behavior 

of the regulator which determines the optimal tax parameter. 

 

3. The innovation game between firms 

 

Given the tax imposed by the regulator in the first stage, firms engage in a 

dynamic game of innovation, deciding whether to adopt the cleaner technology or 

not, and if so at what date. Hence, we analyze the reaction of firms to a given tax 

parameter v. 

 Let φDD  and φDD
t  be the profits of firms when both use technology D respectively 

in the absence of emission tax and after the introduction of it. Let φFF
t  be the profit of 

a firm after both have innovated. Let φFD
t  be the profit of a firm when it has innovated 

while the other still uses technology D. Finally, φDF
t  is the profit of a firm when it still 

uses technology D, while the other has innovated. Total profits are denoted by Φ. 

At each time period, firms decide their production levels (and abatement levels 

when they use the new technology) as the optimal strategies of a Nash-Cournot 

duopoly game (results are given in Appendix 1). 

Conditions (A1) and (A2) in Appendix 1 enable us to rank all quantities, prices, 

emission/output ratios and profits in the four technological cases : 

Output : q q q q q Q Q Q QDD FD
t

FF
t

DF
t

DD
t

DD FF
t

FD
t

DD
t≥ > > = > > > > >0 0   

Price : p p p pDD
t

FD
t

FF
t

DD> > > > 0  

Abatement : a a a a a A A A AFD
t

FF
t

DF
t

DD
t

DD FF
t

FD
t

DD
t

DD> > = = = > > = =0 0  

Emissions : x x x x x X X X XDD DD
t

DF
t

FF
t

FD
t

DD DD
t

FD
t

FF
t> = > > ≥ > > > >0 0  

Emission/output ratios : ( / ) ( / ) ( / ) ( / ) ( / )x q x q x q k x q x qDD DD
t

DF
t

FF
t

FD
t= = = > > ≥ 0  

Profits : φ φ φ φ φDD FD
t

FF
t

DF
t

DD
t

DD FD
t

FF
t

DD
t≥ > > = > > > > >0 0Φ Φ Φ Φ  
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Output is highest without taxation (DD), and is lowest when the regulator tax 

emissions, whereas firms still use technology D. Total output Q rises as innovation 

spreads within  the industry, because the impact of tax emissions is less serious. 

 Total emissions are lowest in the (FF/t) case, implying that environmental 

innovation enables the regulator to achieve  a lower emission level than with the old 

technology. 

The profit squeeze induced by the emission tax is much lower when firms adopt  

the new technology.  

Therefore, in the presence of a suitable tax, firms produce more, pollute less, pay 

lower pollution tax and have a greater profit when they use the cleaner technology. 

In order to understand the innovation game in the industry,  let us analyze the 

case in which only one firm innovates (the FD/t case). Notice that the firm that 

innovates first, will gain substantially from innovation by exploiting the fact that the 

other has to reduce production for limiting the burden of the emission tax. Residual 

emissions and the emission/output ratio are lower than in all other cases for the firm 

that adopts first. As a result, production qFD
t  is greater than in all other cases and the 

profit φFD
t  is very high, thus, making the industry’s profit Φ FD

t  larger than in the 

(FF/t) case, even if the profit of the non-innovating firm remains at the φ φDF
t

DD
t=  

level. All these reasons incite each firm to be the first innovator, but they must be 

compared to the cost of early innovating. 

 If  τ 1  and τ 2  are the adoption dates of firm 1 and 2, respectively, then firm 1’s 

intertemporal objective function is : 

V

g if

g if

g if
1 1 2

1
1

1 2 1 2

1
2

1 2 1 2

1 2

( , )

( , )

( , )

( )

τ τ

τ τ τ τ

τ τ τ τ
τ τ τ

=

<

>
=









                                          (8) 

where, 

g e dt e dt e dtDD
t rt

FD
t rt

FF
t rt

1
1

1 2 0

1

1

2

2
1( , ) ( )τ τ φ φ φ ρ τ

τ

τ

τ

τ
= + + −∫ ∫ ∫− −

+∞
−                   (9) 

     g e dt e dt e dtDD
t rt

DF
t rt

FF
t rt

1
2

1 2 0

2

2

1

1
1( , ) ( )τ τ φ φ φ ρ τ

τ

τ

τ

τ
= + + −∫ ∫ ∫− −

+∞
−                  (10) 

g e dt e dtDD
t rt

FF
t rt( ) ( )τ φ φ ρ τ

τ

τ
= + −∫ ∫−

+∞
−

0
                                           (11) 
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 Firm 1’s payoff is g1
1

1 2( , )τ τ if it innovates first and g1
2

1 2( , )τ τ  if firm 2 innovates 

first. The payoff of each one is g(τ) if they decide to innovate simultaneously at 

τ τ τ= =1 2 . Notice that τ i = +∞  means that firm i never innovates. 

   

Theorem 1. Suppose (A1),(A2) and v≤2λ, then there exist two Nash equilibria of the innovation 

game between firms : 

( , ) ( $, ) ( , ) ( , $) , $* * * *τ τ τ τ τ τ τ τ τ τ1 2 1 2 0= = < < < +∞and  

These optimal adoption dates are accelerated by a higher taxation parameter. 

Proof. See Appendix 2. 

 

 Even if the model is symmetric and there is no uncertainty, the innovation game is 

characterized by diffusion in adoption dates. The intuition behind this result is the 

following : Each firm has an incentive to innovate first with respect to the cases of 

simultaneous innovation or no innovation since φ φ φ φFD
t

FF
t

DF
t

DD
t> > = . Indeed, the 

first adopter has a lower emission/output ratio enabling it to produce more, pollute 

less and consequently pays fewer emission taxes. In addition, it exploits the fact that 

the non-innovating firm must produce less to avoid important pollution taxes. 

However, the first will support higher R&D cost. Therefore, the first innovator has to 

compare the competitive advantage of being first to the higher R&D cost. This 

comparison shows that it is profitable to adopt this cleaner technology first. 

 In the following, the adoption dates will be τ 1  and τ 2  where the subscripts 1 and 2 

indicate respectively the firm that adopts first and second, rather than the identity of 

the firm.  

 

4. The regulator’s optimal strategy 

 

In this section, using the Nash-perfect equilibrium concept, we derive the 

regulator’s optimal strategy which consists of the introduction  of a suitable taxation 

scheme that may induce firms to adopt the new technology. 
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By maximizing his inter-temporal social welfare, the regulator decides whether to 

set a positive tax parameter or not, and if so, the optimal tax parameter.  

The regulator’s social welfare at time t is the sum of the consumer welfare and 

firms profits: 

             W = CS + Φ                                                               (12)   

 Consumer welfare is the sum of consumer surplus derived from the consumption 

of Q and of pollution taxes, minus damages from pollution : 

CS p Q dQ p Q Q t X X M X
Q

= − + −∫ ( ) ( ) ( ) ( )
*

* * * * *

0
                            (13) 

where Q*  and X *are the optimal values of total output and emissions calculated in 

stage two of the game. 

 Therefore, we have5 : 

W p Q dQ cQ
d

k
A M X

Q

= − − −∫ ( ) ( )
*

* * *

0
                                   (14) 

Notice that taxes do not appear in the above expression because they are pure 

transfers from firms to consumers. 

 The socially optimal total output, abatement and emissions are 6 : 

 

Q
c d

A
k c k d

k
X kQ A

d
k

=
− −

=
− − +

= − =
α

β
λ α β λ

βλ λ
,

( ) ( )
,

2 2

2 2

2 2

 

 It is easy to verify that the socially optimal total abatement increases with λ, 

whereas emissions decrease with λ. 

The above quantities represent the Pareto optimum with which we will compare 

the equilibrium quantities resulting from the implementation of the environmental 

policy. 

Using the following notations, we compute the consumer surplus and social 

welfare in Appendix 3 : 

W t W W DD t W W FF t W W FD t W WDD DD
t

FF
t

FD
t

DF
t( ) , ( / ) , ( / ) , ( / )= = = = = =0  

                                                                 
5
 This general formulation includes the (DD/t) case in which the equilibrium abatement level A* is zero. 

6 A iff
d

k c d
≥ ≥

− −
0

2 2λ
β

α( )
.Second order conditions are satisfied. 
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Proposition 1. Suppose (A1),(A2) and v≤2λ, then : 

W W WFF
t

FD
t

DD
t> >  

Proof. See Appendix 4. 

 

 Proposition 1 shows that the adoption of environmental innovation increases the 

social welfare because the cleaner technology enables firms to produce more with 

less pollution. 

 We denote the intertemporal social welfare by : 

W if the regulator imposes a tax

W if no taxation is imposed

t

0






                                 (15) 

where, 

W
W W e dt W e dt W e dt

W W e dt W e dt

t

t
DD
t rt

FD
t rt

FF
t rt

t
DD
t rt

FF
t rt

=
= + + − − <

= + − = =









∫ ∫ ∫

∫ ∫

− − +∞ −

− +∞ −

( , ) ( ) ( ), ( )

( ) ( ) , ( )

τ τ ρ τ ρ τ τ τ

τ ρ τ τ τ τ

τ

τ

τ

τ

τ

τ

1 2 0

1

1

2

2
1 2 1 2

0 1 2

16

2 17

W W e dtDD
rt0

0
= −+∞

∫                                                                                                                (18) 

We recall that τ 1  and τ2  are the adoption dates of the first and second innovator, 

respectively. 

 

Theorem 2. Suppose that the discount rate is sufficiently close to zero and ] ]λ λ λ∈ 1 2, A , then 

the optimal tax parameter is v =
4
3

λ . 

Proof. See Appendix 5. 

 

 Hence, the regulator finds it optimal to tax emissions if and only if consumers’ 

valuation of environmental quality is sufficiently high. The upper bound λA2  

guarantees non-negative residual emissions. When λ belongs to ] ]λ λ1 2, A , conditions 

(A1) and (A2) are verified by v .  
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Proposition 2. The optimal emission tax parameter determines an inefficient allocation in terms 

of total output, but enables the regulator to achieve the socially-optimal level of total pollution, 

i.e.: 

Q v Q X v XFF
t

FF
t( ) , ( )< =     

Proof. Immediate. 

 

In the following, we will compare the socially optimal innovation process to the 

private one. Let τ is  be the socially optimal adoption dates.  

 

Theorem 3. Suppose (A1),(A2) and v ≤ 2λ, then there exists a unique pair ( , )τ τ1 2s s that 

maximizes intertemporal social welfare, verifying: 

 0 1 2≤ < < +∞τ τs s  

Proof. See Appendix 6. 

 

 There is an incentive for the regulator that firms innovate simultaneously because 

the social welfare is greater than when only one firm innovates. But the positive 

difference W WFF
t

FD
t−  is not high enough, and that is why the regulator prefers to 

support only one innovation cost earlier and wait until the second cost of innovation 

decreases sufficiently. Therefore, diffusion in adoption dates, which has been shown 

to be optimal for firms,  is actually socially optimal. 

 

Theorem 4. Suppose (A1),(A2) and v ≤ 2λ, then we have:  

0 1 1 2 2≤ < < < < + ∞τ τ τ τs s
* *  

Proof. See Appendix 7. 

 

We know that the first innovator gains a competitive advantage since 

φ φ φ φFD
t

FF
t

DF
t

DD
t> > = . Because of this competition between firms, private diffusion is 

not very important and the first innovator adopts this cleaner technology later than 

what is socially desirable. Since W WFD
t

DD
t> , the regulator prefers that the first 

innovator innovates earlier ( )*τ τ1 1s < in order to produce more than the second  
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(q qFD
t

DF
t> ) and pollutes less ( x xFD

t
DF
t< ) in the period[ ]τ τ1 2s s, , while reducing the 

cost of innovation of the second innovator by delaying its date of adoption 

( )*τ τ2 2s > 7. The socially optimal adoption date of the first innovator can be 

immediate (equal to zero) if condition (3) is an equality (see (A13)). This is the case 

when the cost of immediate adoption b is not very high. However, the optimal 

private adoption date of the first innovator cannot be immediate8 because0 1 1≤ <τ τs
* .  

 If the regulator prefers to change the private adoption dates of firms (especially of 

the first innovator), he can do it by giving an innovation subsidy to each firm equal 

to the loss incurred by that change in the adoption date. 

 

5. Conclusion                           

 

 We study taxation of pollution as a tool inducing firms to adopt a cleaner 

production technology. Two symmetric firms are located in a country. Firms by-

produce pollution along with the same good sold on the market, and can adopt a 

cleaner technology within a time t by supporting an actualized cost ρ(t) which 

decreases exponentially. In our framework, the cost of instantaneous innovation is 

relatively high and the discount rate is sufficiently low. The incentive to innovate is 

provided by the environmental policy consisting of taxing pollution.  

Firms choose their optimal adoption dates by maximizing their individual 

intertemporal payoffs, and the regulator chooses the optimal tax parameter by 

maximizing the intertemporal social welfare. If the tax parameter is well chosen, then 

firms will adopt the less polluting innovation at finite but different dates. This 

innovation enables them to produce more, pollute less, pay lower emission tax and 

it increases the (intertemporal) profit and social welfare. Furthermore, we have 

                                                                 
7
 This result is contrary to the one reached by Carraro and Topa (Theorem 3). 

8
 In this paper, we usually compare the socially optimal levels to the private ones (derived from the competition 

between firms and given the optimal tax parameter), but if we want to restrict ourselves uniquely to the latter, we 

can replace condition (3) by 
φ φFD

t
DD
t

mr
b

−
≤ . When this las t inequality is an equality, then the optimal private 

adoption date of the first innovator is instantaneous (because of (A5)). 



 16

established that this technological diffusion is really socially optimal and that the 

social adoption date of the first innovator is earlier than the private one, and the 

contrary for the second innovator. Subsidies may be used to move to the socially 

optimal dates of innovation. 

 Notice that we have dealt with an infinite horizon thus avoiding too hard 

computations, but our results remain valid for a sufficiently long finite horizon.  

A possible extension of this work is to consider that damages caused to the 

environment are due to the stock of pollution rather than to the flow of emissions. It 

is also interesting to know whether technological diffusion is preserved when there 

are more than two firms or not. 
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DD situation without taxation 
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The emission/output ratio is ( / )x q kDD = . 

 

DD situation with taxation 

We define β β' = + vk 2 , then : 
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The emission/output ratio is ( / )x q kDD
t = . 

 

 

FF situation with taxation 
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Therefore, the tax parameter must be sufficiently high to induce firms to abate a strictly positive amount 

of emissions. The minimum tax parameter is a decreasing function of α and k, and is an increasing 

function of c and d.  

 

FD situation with taxation 

q
c

q q
vk c d c

q Q
vk c d c

Q

p p Q
vk vk c d

p

a a a
vk c d

vk
a A

DF
t

FD
t

FD
t

FD
t

DF
t

FD
t

FD
t

1 2

2 2

2 2

1 2

2

3 2 3 2
2

3

2 3 4 3 3
6

0
2

*
'

*
'

' '
*

'

' '

* *
'

'

* *
'

,
( )

,
( ) ( )

( )
( ) ( )

,
( )

= − = = − − + − = = − − + − =

= = + + + + =

= = = − − = =

α
β

α β
ββ

α
β

α β
ββ

α
β

β α β β
β

α β
β

 

[ ]

[ ]

x
k c

x x
d vk c

vk
x X

vk c d

vk
X

c vk c d

vk

c

vk c d

vk

DF
t

FD
t

FD
t

DF
t

FD
t

FD
t

DF
t

FD
t

1 2

2 2

1

2

2

2 2

2

2

2 2

2

3

3

6

3

6

9 4 9

4

2

*
'

*
'

'
*

'

'

*
'

*
'

' '

'

'

( )
,

( )
,

( )

( )
,

( ) ( )

( ) (

=
−

= =
− −

= =
− +

=

=
−

= =
− −

+
−

=

= + =
− −

+

α

β

β α

β

α β

β

α
β

φ
α β

ββ
α

β
φ

φ φ
α β

ββ
α

Π Π

Φ
− c)

'

2

9β

 



 18

Firm 1’s emission/output ratio is ( / )x q kDF
t = . 

Firm 2’s emission/output ratio is 
[ ]
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Hence, an upper limit on the tax parameter must be imposed for the first innovator not to abate more 

than it pollutes. 

By combining conditions (A1) and (A2), we get the feasibility region for the tax parameter :   

v ∈ ] ]A v v vA A( ) ,= 1 2                                                                  (A3) 

 

Condition (A1) implies that the tax rates verify : t t t tDD FD DF FF> = > . It is easy to verify that abatement 

is an increasing function of v, whereas residual emissions, emission/output ratios and firms profits are 

decreasing functions of v. 

 

Appendix 2 

 

As expressions (9) and (10) are not differentiable in τ τ τ1 2= = , we use them to have the optimal adoption dates 

when τ τ1 2≠  (diffusion). Then, we use expression (11) to get the optimal simultaneous adoption date. Lastly, we 

compare the intertemporal payoffs of firms generated by diffusion and simultaneous innovation.     

• Suppose that firms decide to innovate at different dates and that firm 1 is the first innovator (the case 

where firm 2 is the first innovator is symmetric). 

Firm 1 maximizes V g1 1 2 1
1

1 2( , ) ( , )τ τ τ τ=  defined in (9) with respect to τ1  : 

∂ τ τ
∂τ

φ φ ρ ττV
eDD

t
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t r1 1 2

1

1
1 0
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Expression (2) and the resolution of (A4) give :                                        

[ ]
τ
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1 1
*
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−
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The above inequality is verified because from (A9) and (A12) we have :  
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Indeed, using (A1) and v≤2λ, we prove that the term between the second brackets is strictly positive. 

Thus, from (3) :  
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0 < − < − ≤φ φFD
t

DD
t

FD
t

DD
tW W bmr                                                        (A6) 

Using (A4) and the expression of ρ(t), second order condition becomes :  
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Firm 2 maximizes V g2 1 2 2
2

1 2( , ) ( , )τ τ τ τ= , defined in (10) expressed for it, with respect to τ2 : 
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Solving (A7) gives :                                      
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Using (A7) and the expression of ρ(t),  second order condition becomes :  

∂ τ τ
∂τ

φ φ ρ ττ τ
2

2 1 2

2
2

2
2

2 21 0
V

r e m bmr eDF
t

FF
t r mr( , )

( ) '' ( ) ( )
* * * * *

= − − − = − <− −   

From (A9), we have 
∂τ
∂

∂τ
∂

1 20 0
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,
v v

< <  and 0 1 2< < < +∞τ τ* *  as we have supposed. 

Results in Appendix 1 give : 
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• Suppose that firms decide to innovate simultaneously. Then, each firm i maximizes 

V V gi i( , ) ( ) ( )τ τ τ τ1 2 = = defined in (11) with respect to τ. We obtain 9 : 

[ ]
τ

φ φ* ln ( ) /

( )
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−
−

FF
t

DD
t bmr

m r1
                                                            (A10) 

• In the following we will prove that the case in which firms innovate simultaneously is not a Nash 

equilibrium of the innovation game. 

First, we remark that τ τ2
* *= (since φ φDD

t
DF
t= ) meaning that the second innovator (firm 2) adopts at the 

same date of simultaneous innovation. From (10) and (11) expressed for firm 2, we get V V2 1 2 2( , ) ( )* * *τ τ τ= . 

Thus, each firm is indifferent between being the second innovator or innovating simultaneously. 

Concerning the first innovator (firm 1), we should compare V1 1( , )* *τ τ  to V1( )*τ . Using (2), (9) and (11) 

we get : 
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Using (A5), (A10) and from (A9) : φ φ φ φFD
t

DD
t

FF
t

DD
t− = −9

4
( ) , we obtain : 

                                                                 
9
 By using the first order condition, second order condition is satisfied. 
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The above difference is strictly positive iff f(m)>0, where function f is defined by : 
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So, f’ is strictly increasing with lim '( )
1+

= −∞f x  and lim ' ( )
+∞

=f x 0 , then f’(x) < 0 i.e. f is strictly decreasing 

with lim ( )
1+

= +∞f x  and ( )lim ( ) ln( / )
+∞

= − +f x
9
4

9 4 1 1 >0. Therefore, f x x( ) ,> ∀ >0 1 . 

We can affirm that each firm prefers to be the first innovator than innovating simultaneously. Therefore, 

the case in which the two firms innovate simultaneously is not a Nash equilibrium because one firm can 

deviate by being the first adopter. This innovation game is then characterized by two possible Nash 

equilibria, in which one firm innovates before the other and gains more.  
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Using (13), (14) and the results of Appendix 1, we get : 
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Notice that WDD ≥ 0 iff λ
β≤
k2 . This suggests the introduction of the environmental tax when λ is too 

high for the social welfare to be positive. Otherwise, the activity of firms is not desirable. 
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The results of Appendix 3 give : 
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Using condition (A1) and v ≤ 2λ , we prove that the term between the second brackets is strictly positive 

implying :  
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Similarly : 
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We prove W WFD
t

DD
t− > 0 . 

It is easy to verify that WDD
t ≥ 0  iff v

k
≥ −2

3
2

3 2λ
β . 
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We proceed as follows : First, we establish a Lemma which shows that when the regulator decides to tax 

pollution, the optimal tax parameter maximizing intertemporal social welfare W t  is v = 4
3

λ . Then, we 

compare W vt ( )  with W0 (no taxation), to determine whether the regulator should tax emissions or not. 

This comparison will show that W v Wt ( ) > 0  occurs in the interval ] ]λ λ1 2, A . It is then necessary to 

compare this interval with A(v) (given by (A3), expressed in terms of λ), for the solution to be feasible. 

 

Lemma 1. Suppose (A1),(A2), v≤2λ and the discount rate sufficiently close to zero, then the intertemporal social 

welfare W t is maximized by v = 4
3

λ . 

 

Proof : The innovation game between firms results in both firms adopting the cleaner technology at 

different dates when (A1),(A2) and v≤2λ are verified. Furthermore, suppose that the discount rate is 

sufficiently close to zero. As the time horizon is infinite, the maximization of W t  is reduced to the 

maximization of WFF
t  since :  
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Using the previous argument to compare W vt ( ) and W 0 , we simply need to compare W vFF
t ( )  and WDD .  
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Then W v WFF
t

DD( ) − > 0  iff ] [ ] [λ λ λ∈ ∪ + ∞0 0 1, ,  where :  
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The above condition on λ (or v) must be compatible with conditions (A1) and (A2). 

If v v= = 4
3

λ , then conditions (A1) and (A2) become ] ]λ λ λ∈ A A1 2,  with : 
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Using α - c > 3d , we get the following ranking : 

0 0 1 1 2< < < <λ λ λ λA A  

So, W v Wt ( ) > 0  iff ] ]λ λ λ∈ 1 2, A  . 

 

Appendix 6 

 

If (A1), (A2) and v≤2λ are satisfied, this implies that the regulator decides to tax emissions and that firms 

will innovate at different dates. But what is socially optimal ? The adoption of the new technology by 

firms at different dates and what are these dates, or the adoption at the same date ? To answer these 

questions, we will determine the socially optimal adoption dates and compare the intertemporal social 

welfare in both cases. 

• Suppose that firms adopt the new technology at different dates. What are these socially optimal 

adoption dates ? 

The regulator maximizes W t ( , )τ τ1 2  given by (16) with respect to τ1  and τ2 . We get 10 : 
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Inequality (3) implies τ1s ≥0. Using (A12), (A11) , and then (A1) and v ≤ 2λ for the following terms without 

brackets in (A14), we get : 

                                                                 
10

 Second order condition is verified. 
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So, 0 1 2≤ < < +∞τ τs s . 

 

 

• Suppose that firms adopt the new technology simultaneously. What is the socially optimal adoption 

date ? 

The regulator maximizes W t ( )τ  given by (17) with respect to τ. We get 8 : 
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• To know whether diffusion is socially preferred or not, we will compare W t
s s( , )τ τ1 2 to Wt

s( )τ . 

W W e dt W e dt W e dt W e dt

W W e dt W e dt W e dt W e dt

t
s s DD

ts rt
FD
t

s

s rt
FD
t

s

s rt
FF
t

s

rt
s s

t
s DD

ts rt
DD
t

s

s rt
FF
t

s

s rt
FF
t

s

rt
s

( , ) ( ) ( )

( ) ( )

τ τ ρ τ ρ τ

τ ρ τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

1 2
0

1

1

2

2
1 2

0

1

1

2

2
2

= + + + − −

= + + + −

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

− − −
+∞

−

− − −
+∞

−

W W
r

W W e
r

W W e

r
W W e

b m
W W

bmr

W W

bmr

t
s s

t
s FD

t
DD
t r s

s FF
t

FD
t r s

s

FF
t

DD
t r s

s

FF
t

FD
t

m
m

FD
t

DD
t

m
m

( , ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( )

τ τ τ ρ τ ρ τ

ρ τ

τ τ

τ

1 2
1

1
2

2

1

1 1

1
2

1

− = − −






+ − −






− − −






= −
−







 +

−









− −

−

− − −
−

−

























1 1

2
2

W W

bmr
FF
t

DD
t

m
m

 

The function h x x x
m

m( ) ,= ∀ >−1 0  is convex since h’’(x)>0 i.e. 2h(
x y+

2
)<h(x)+h(y) ∀x,y>0. As a 

consequence W Wt
s s

t
s( , ) ( )τ τ τ1 2 0− > .    

Therefore, the regulator prefers that firms innovate at different dates. 

 

Appendix 7 
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• Inequality (A6) is equivalent to 0 1 1≤ < < +∞τ τs
* . 

• From (A11) and (A9) we have : 

 

( ) ( )
( ) ( )

( )

( )
( )

' '

'

'

'

W W
v v

v k
d

v v
v

c d

vk v k
c

FF
t

FD
t

FF
t

DF
t− − − =− − − + + − −

+ − + − −

φ φ β λ β
β

β λ β
ββ

α

β λ β
ββ

α

3 7 2
72

6 6 2
72

3 2
72

2 2
2

2 2

2
2

                    (A15) 

The lowest root of the above equation in d is d
vk

c1

2

= −
β

α' ( ) . 

If d d< 1 , then ( ) ( )W WFF
t

FD
t

FF
t

DF
t− − − <φ φ 0   i.e. τ τ2 2s > * . 

But (A1) is equivalent to d d< 1 . Thus, τ τ2 2s > * . 

Finally, we reach the following ranking :  

0 1 1 2 2≤ < < < < +∞τ τ τ τs s
* *  
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