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Abstract 
 
This paper implements a novel approach to formalizing spatial externalities by employing 
spatial econometric methods that combine spatial dependence and spatial heterogeneity in 
the form of spatial regimes.  The results confirm earlier findings that academic 
externalities are not uniform across sectors but also indicate important differences across 
sectors in terms of agglomeration effects. 
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I.  Introduction 
 
The contribution of university research to the complex Arrow-Marshall-Romer externalities that 

characterize local innovation systems has received considerable attention in recent work on 

endogenous growth and the new economic geography (Romer, 1990, Grossman and Helpman, 

1991, Krugman, 1991).  These externalities, or “real effects of academic research” follow from 

the public good nature of the research produced by universities, and, ceteris paribus, result in a 

higher or more efficient innovative output on the part of the private sector.  Crucial empirical 

aspects of these externalities are the extent to which they are uniform across sectors and their 

geographic scope.  

In a recent paper (Anselin, Varga, Acs, 1997), we were able to shed some initial light on 

this issue for high technology innovations measured as an aggregate across five two-digit SIC 

industries.  Our point of departure was Jaffe's (1989, p. 968) often cited finding that “there is 

only weak evidence that spillovers are facilitated by geographic coincidence of universities and 

research labs within the state.”  This runs counter to the pre-eminence of geographic clustering 

and the role of distance decay in the literature on agglomeration economies in urban and regional 

economics (Fujita and Thisse 1996).  We found that the spillovers of university research on 

innovation extended over a range of 50 miles from the innovating MSA, but this was not the case 

for the private R&D.   

In this paper we focus on two additional dimensions of this issue. First, as in Anselin, 

Varga and Acs (2000), we broaden the cross-sectional basis for empirical analysis by utilizing 

disaggregated data for four high technology sectors at the MSA level.  However, distinct from 

that paper, we introduce a test for agglomeration effects in the form of “spatial regimes,” which 

differentiates unconnected metropolitan areas from those that are part of a geographic network of 

innovation systems.  This provides a different perspective on the spatial “range” of spillovers and 

introduces a formal mechanism to assess the difference between the spatial interaction in urban 
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areas with and without “neighbors”, an idea that recently is gaining increased attention in urban 

economics (Ioannides 2000). In the remainder of the paper, we first introduce the formal model 

underlying the knowledge production function and the specification of the geographic scope of 

spillovers.  We next briefly describe the data set and outline some general methodological issues.  

Subsequently, we present the results of our disaggregated analysis at the MSA level.  We close 

the paper with some concluding comments. 

II.  Knowledge Production and Geographic Scope of Externalities 

The econometric specification for analyzing the geographic spillovers of university research on 

regional innovative capacity is derived from the knowledge production function (KPF) of 

Griliches (1979).  In essence, this is a two-factor Cobb-Douglas production function where K is a 

proxy for knowledge, R is industry R&D and U is university research, with β and γ as associated 

parameters. In addition to R and U, a vector of “local” economic characteristics Z is often 

included as well, such that the operational specification becomes: 

 log (K) = α + β log( R ) + γ log (U) + δ log (Z) + ε= (1) 

where ε is a vector of stochastic error terms.  A positive and significant coefficient for γ indicates 

the presence of positive externalities from the university research on industrial innovative 

activity.  By contrast, the lack of significance of γ would suggest that all innovative “knowledge” 

production is generated internally to the industrial sector.  This does not preclude the presence of 

additional knowledge externalities of the Arrow-Marshall-Romer or Isard-Jacobs type, but these 

would be reflected by the coefficients of the local characteristics in Z.  Typically, the latter 

would include measures such as the concentration of a given activity (a proxy for information 

exchange via “learning by doing”) and the presence of business services in the local economy 
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(reflecting the effect of locally accumulated knowledge regarding the financial, legal and 

marketing aspects of innovation). 

Agglomeration economies encompass a range of effects due to spatial externalities, 

increasing returns and spatial competition that tend to provide benefits to economic activities 

carried out in geographic proximity.  In the context of the role of university research, the most 

important aspect of agglomeration economies would be the existence of informational spillovers.  

However, the evidence at the aggregate level in Anselin, Varga and Acs (1997) suggests that the 

spillovers may well reach beyond the geographic definition of the MSA.  To the extent that 

MSAs are within easy commuting distance from each other, they in effect become part of a larger 

system of networked and interacting agents.  The additional benefits from being part of such a 

network should be reflected in higher values of the model parameters (more innovative output 

per unit of input) for those MSAs that are “connected” relative to MSAs that are “isolated”.  In 

other words, the geographic boundedness of the knowledge spillovers is directly linked to a 

distance decay effect.  This implies zero interaction beyond a given critical distance threshold, 

but also suggests that when observational units (MSAs) are within such a distance threshold, 

there is no reason for the agglomeration economies to be limited to within-MSA effects. 

Consider a set S of N geographical units (MSAs), partitioned into two non-overlapping 

subsets, I and J, I ∩ J = ∅,  and I ∪  J = S; set I with connected units, J with isolated units.  Each 

observational unit belongs to one and only one of the subsets: 

 i ∈  I iff ∃  h ∈  S s.t. dih < δ,  

and 

 j ∈  J iff { k | k ∈  S and djk < δ } = ∅ =

for a proper distance metric dij and with δ as a critical threshold distance. 
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The two subsets can be used to characterize “spatial regimes,” or contiguous and non-

overlapping subsets of the data that may correspond to different model parameters and/or 

functional forms, in a fixed-effects sense (Anselin 1990).  In general: 

 yi = αi + xiβi + εi, E[εi] = 0, Var[εi] = σ2
i, ∀  i ∈  I      (2) 

 yj = αj + xjβj + εj, E[εj] = 0, Var[εj] = σ2
j  ∀  j ∈  J     (3) 

where the subscripts pertain to observations in each subset; the αi(j)  are the intercept, βi(j) a K by 

1 vector of slope coefficients, yi(j)observations on the dependent variable, xi(j) a 1 by K vector of 

observations on the explanatory variables, and εi(j) stochastic error terms with mean zero and 

(fixed) variance σ2
i(j).  The classification of observations into the two regimes allows for testable 

hypotheses on the constancy of model parameters α and β across regimes by means of test 

statistics for structural stability.   

In the context of the KPF, the presence of structural instability stratified along spatial 

regimes pertaining to “connected” and “unconnected” MSAs provides an indication of 

agglomeration economies that transcend the MSA.  In a sense, this design can be interpreted as a 

quasi-experiment, where the controls are the unconnected MSAs and the treatment is the more 

complex network structure that may be present due to the geographic closeness of the connected 

MSAs.  Rejection of the null hypothesis of spatial homogeneity would suggest a significant 

difference in the production of knowledge between the two spatial settings.  Failure to reject the 

null hypothesis would not allow such an interpretation and instead would suggest that the same 

mechanisms are working in both subsets, or, that any agglomeration economies would be 

contained within the MSA and are adequately captured by variables measured at that scale. 

In the absence of spatial autocorrelation, a test for regional homogeneity of the 

regression coefficients between the two spatial regimes can be carried out by means of textbook 
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test statistics for structural change, such as a Chow test.  However, the presence of spatial 

autocorrelation requires a spatially adjusted test for structural stability (Anselin, 1990).  In our 

application, this is carried out by stacking the data for the connected and unconnected 

observations and creating two sets of explanatory variables, xi = x ∀  i ∈  I and xi = 0 otherwise, 

and, similarly, xj = x ∀  j ∈  J and xj = 0 otherwise, with the subsets I and J defined as in (2)-(3).  

A test for regional homogeneity is then implemented as a test on the null hypothesis βi = βj, 

where the β coefficients are associated with xi and xj respectively.  In the absence of spatial 

autocorrelation, this is equivalent to a Chow test.  In the presence of spatial autocorrelation, the 

proper estimators incorporating either a spatial lag or spatial error term ensure that the standard 

errors of the estimated coefficients reflect the loss of information associated with (positive) 

spatial autocorrelation. 

The specific implementation of this approach in our applications turns out to be 

straightforward, since the definition of the regimes precludes the presence of spatial 

autocorrelation in the unconnected set.1  Consequently, potential misspecification in the form of 

a spatial lag or error model needs only to be considered for the “connected” subset.  Specifically, 

we apply Lagrange Multiplier tests for spatial autocorrelation (Anselin and Bera, 1998) to test 

for this form of misspecification.  If a spatial lag is the suggested alternative model, we apply 

maximum likelihood estimation when errors are normally distributed or spatial-two-stage-least-

squares estimation, S2SLS otherwise (Anselin, 1988; Kelejian and Prucha, 1998).  If a spatial 

error model is the suggested alternative, normality of error terms allows us to employ ML 

estimation (Ord, 1975) or, in case of non-normality, a Generalized Moments (GM) estimator 

                                                           
1 This assumes that the “proper” definition of the spatial weights matrix is based on the same 50 mile 
distance cut-off as the definition of the spatial regimes.  In practice, this assumption does not affect our 
conclusions.  The overall results were not affected (in a qualitative sense) when other spatial weights were 
applied, such as a 75 mile distance cut-off and an inverse distance decay. 
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(Kelejian and Prucha 1999) is applied.  In each of the alternative models, we also carry out 

specification tests for remaining autocorrelation, using LM tests (Anselin et al, 1996) or a 

generalization of Moran's I for S2SLS residuals (Anselin and Kelejian, 1997).2 

A final issue is the potential presence of endogeneity in the KPF.  In Jaffe (1989) this is 

assessed by extending the model with two additional specifications, one for private R&D and one 

for university research.  In Anselin, Acs and Varga (1997), we followed a similar approach.  For 

the sectorally disaggregated data considered here however, Durbin-Wu-Haussman tests for 

endogeneity did not allow for the rejection of the null hypothesis.  Consequently, in the current 

empirical exercise, we could treat both variables as exogenous and limit the model to a single 

equation.  

III.  Data and Variable Definitions 

The dependent variable in our empirical analysis is the count of innovations as reported in the 

U.S. Small Business Administration Innovation Database.  The data set is a compilation of 

innovations that were introduced to the U.S. market in the year 1982, based on an extensive 

review of new product announcements in trade and technical journals (Edwards and Gordon, 

1984).  We considered innovations in four “high technology” sectors, broadly defined as Drugs 

and Chemicals (SIC 28), Industrial Machinery (SIC 35), Electronics (SIC 36) and Instruments 

(SIC 38).  These four two-digit categories contain most of the 3 and 4 digit sectors that are 

typically categorized as high technology sectors.  Except for Industrial Machinery, our sectoral 

                                                           
2 No special considerations need to be taken into account, as long as the number of spatial regimes is fixed 
(which it is, by assumption) and the number of cross-sectional observations in the connected subset is 
allowed to increase to infinity in order to ensure the proper asymptotics.  A more extensive discussion of 
technical issues is contained in Anselin and Bera (1998). 
 



  

 

7

 

aggregation is the same as the one used in earlier studies by Jaffe (1989) and Acs, Audretsch and 

Feldman (1992).3  

 Our measure for industrial R&D activity is constructed from data on professional 

employment in high technology research laboratories in the Bowker directories [Jaques Cattell 

Press (1982)]. While imperfect, this allowed us to construct a private R&D variable at the U.S. 

county scale, which could be consistently aggregated up to states and MSAs (see Varga, 1998, 

for details).4  Our data for university research expenditures follow the common approach in the 

literature and are compiled from the NSF Survey of Scientific and Engineering Expenditures at 

Universities and Colleges for the year 1982 (National Science Foundation, 1982).  

 In addition, we also included a number of variables compiled from County Business 

Pattern data for 1982 (Bureau of the Census, 1982) to capture agglomeration economies and size 

effects [the variables in Z in equation (1)].  Specifically, we included a location quotient for high 

technology employment, LQ; employment in business services (SIC 73), BUS; and the percent 

“large” firms (i.e., firms with employment exceeding 500), LARGE. 

Our final data set only included those MSAs for which there were innovations in the 

high technology sector as well as both private industry R&D and university research 

expenditures. 5  The number of observations ranged from 48 for SIC 28, to 89 for SIC 35 (SIC 36 

had 70 valid observations and SIC 38 had 63).6  In addition, since the selection of MSAs was 

                                                           
3 Jaffe (1989) and Acs, Audretsch and Feldman (1992) use Mechanical Arts as the fourth sector, which is 
roughly similar but not identical to our Machinery (SIC 35). 
4 The use of laboratory employment as a proxy for expenditures assumes a constancy of the labor intensity 
and capital/labor ratio of R&D across the units of observation.  To the extent that this is not the case, it will 
tend to yield heteroskedastic and/or spatially autocorrelated error terms, which will merit special attention 
in our analysis and will be addressed by means of a spatial econometric approach. 
5 Due to the presence of zeros, it was not possible to include the four sectors in a consistent system of 
unrelated regressions without losing too many observations (the matching set across all four sectors would 
only consist of 36 observations), so that any spillovers across sectors are assumed to be incorporated in the 
single equation error terms in an unspecified form. 
6 A full listing of the data is given in the Appendix of Anselin, Varga and Acs (2000). 
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different for each sector, the stratification into connected and unconnected spatial regimes 

differed as well.  This was based on a distance threshold criterion of 50 miles.7  For SIC 28, there 

were 18 unconnected MSAs, for SIC 35, 43, for SIC 36, 33, and for SIC 38, 29.  In each case, 

this is slightly less than half of the total number of observations. 

IV.  Empirical Results 

We estimated a KPF for a constrained OLS regression (constraining the coefficients to be equal 

in both spatial regimes) as well as, where appropriate, in an unconstrained feasible generalized 

least squares (FGLS) regression with different estimates for each regime.8  For each regression, 

results of a test for regional homogeneity are reported, as well as the LM specification tests for 

spatial autocorrelation.  If the null hypothesis of no spatial autocorrelation is rejected, results are 

presented with the estimation for the proper spatial alternative. All estimations and specification 

tests were carried out with the SpaceStat software (Anselin 1999). 

Regional homogeneity is rejected for SIC 35 and SIC 38, but not for the other two 

sectors.  Hence, for SIC 28 and SIC 36, there is no indication of a significant difference in the 

spillovers encompassed in the KPF between connected and unconnected MSAs.9  As shown in 

Table 1, there is little evidence of any knowledge spillovers at all for drugs and chemicals (SIC 

28), indicating only a significant and positive coefficient for industry R&D.  This strongly 

contrasts with the earlier findings at the state level by Jaffe (1989) and Acs, Audretsch and 

Feldman (1992) where a significant coincidence effect was found for this sector. 

The results are more interesting for the electronics sector (SIC 36), where there is a 

positive and significant effect of both industry and university research, as well as of the location 

                                                           
7 The analysis was also carried out for a distance cutoff of 75 miles, but did not yield substantively different 
conclusions. 
8 The FGLS regression estimated a separate error variance coefficient for each regime, thus allowing for 
groupwise heteroskedasticity across regimes. 
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quotient and business services (the firm size variable was not significant).  There is a strong 

indication of positive spatial error autocorrelation, but its incorporation does not alter the lack of 

evidence of regional heterogeneity.  Substantively, there is little change between the 

interpretation of the model with and without spatial autocorrelation, which is to be expected.  

The main effect of the spatial error autocorrelation is on the precision of the estimates, but in this 

case, this is not sufficient to alter any indication of significance.  

For the machinery sector (SIC 35), the estimation results indicate the presence of both 

regional heterogeneity between the two spatial regimes, as well as a spatial lag model for the 

connected observations.  This is the only sector for which our empirical results suggest the 

presence of knowledge externalities that transcend the geographic scale of the MSA in 

accordance with our conceptual framework.  The spatial lag coefficient is significant and 

positive, as expected (0.231 for S2SLS).  However, interestingly, neither R&D nor university 

research are significant contributors to innovations in this sector.  Note that there is a very weak 

indication of some effect of R&D for the connected MSAs, but none at all for the unconnected 

metro areas.  Both sectoral concentration and business services show a positive and significant 

effect, roughly similar in magnitude for the former, but almost twice as large in connected metro 

areas for the latter.10  The failure of the KPF in this instance may be due to a number of factors, 

such as specification problems (the restrictive form of the Cobb-Douglas specification) or the 

lack of an explicit accounting of inter-sectoral innovation spillovers.  More likely however, is the 

fact that the 2 digit SIC aggregation masks considerable underlying heterogeneity which would 

not affect the “catch-all” agglomeration variables (such as concentration or business services) but 

                                                                                                                                                                             
9 For SIC 28, the Chow test statistic was 11.86 and for SIC 36, 5.26, neither of which was significant at p = 
0.05.  Given this result, we do not report the estimates for regimes. 
10 A test for regional stability of the business services coefficient across spatial regimes reveals significant 
differences (p < 0.01). 
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may be to crude to allow R&D and/or university effects to be captured.  This remains to be 

investigated by means of further disaggregated data. 

Finally, for instruments (SIC 38), still a different pattern emerges.  There is strong 

evidence of regional heterogeneity, but no indication of spatial autocorrelation.  Industry R&D is 

significant in both regimes, but much more so in the unconnected MSAs.  For university 

research, this pattern is more pronounced, with a positive and significant coefficient in the 

unconnected MSAs, but no significance in the connected ones.   

V.  Conclusions 

The findings in this paper have broadened the empirical evidence for the existence of both 

sectoral and regional differences in the innovative process.  This extension is three-fold.  First, 

relative to the earlier results of Jaffe (1989) and Acs, Audretsch and Feldman (1992), we did not 

find uniform evidence of positive externalities for university research.  Confirming the results in 

Anselin, Varga and Acs (2000) where no regimes were accounted for, we found such an effect 

only in the electronics sector (SIC 36), suggesting a much richer story than previously indicated 

and possibly indicating the uniqueness of electronics and the regional agglomerations in which 

they thrive.  Secondly, the suggestion of a broader spatial range of the spillovers that we found 

for MSAs without taking into account the regimes (Anselin, Varga and Acs 1997, 2000) does not 

carry over to the sectoral disaggregated scale.  Thirdly, for the machinery and instruments 

sectors, we found strong evidence of the existence of spatial regimes, implying that different 

mechanisms may be at work to generate externalities in connected as opposed to unconnected 

MSAs.   

The empirical results raise a number of interesting issues.  While the importance of 

carefully specifying spatial effects and the geographic scope of these effects was demonstrated, 
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evidence supporting such effects is only the beginning.  Moreover, a comparison of the regime 

approach taken here with a more standard spatial econometric modeling in Anselin, Varga and 

Acs (2000) suggests that the results are sensitive to the specification of the spatial design. A 

more thorough understanding of the nature and scope of spillovers involved will necessitate an 

extension of the cross-sectional framework to incorporate the time dimension as well.  
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Table 1 
Industrially Detailed Regression Results on Log(Innovations) for US Metropolitan Areas, 1982 

Model Chemicals (SIC28) 
 

OLS 

Machinery (SIC35) 
Spatial Lag  
IV – GHET 

Spatial Regimes 

Electronics (SIC36) 
Spatial Error 

ML 

Instruments (SIC38) 
 

FGLS 
Spatial Regimes 

Constant 
 
 
 
 
W_Log(INN) 
 
 
Log(RD) 
 
 
 
 
Log(URD) 
 
 
 
 
Log(LQ) 
 
 
 
 
Log(BUS) 
 
 
 
 
Log(LARGE) 
 
 
 
 
Sigma – 0 
 
Sigma – 1 
 
Lambda 

-1.600 
(0.431) 

 
 
 
 
 
 

0.349 
(0.131) 

 
 
 

-0.012 
(0.061) 

 
 
 

0.242 
(0.180) 

 
 
 

0.226 
(0.141) 

 
 
 

0.077 
(0.125) 

-2.930 
(0.288) 
-1.419 
(0.357) 

 
0.231 

(0.089) 
 

0.112 
(0.063) 
0.001 

(0.048) 
 

-0.051 
(0.038) 
0.060 

(0.038) 
 

0.583 
(0.153) 
0.640 

(0.208) 
 

0.838 
(0.088) 
0.420 

(0.098) 
 

-0.060 
(0.107) 
-0.278 
(0.113) 

 
0.058 

 
0.056 

 

-1.698 
(0.297) 

 
 
 

 
 
 

0.154 
(0.057) 

 
 
 

0.097 
(0.040) 

 
 
 

0.524 
(0.135) 

 
 
 

0.413 
(0.095) 

 
 
 

-0.141 
(0.083) 

 
 
 
 
 
 
 

0.339 
(0.125) 

-2.092 
(0.462) 
-0.988 
(0.452) 

 
 
 
 

0.176 
(0.081) 
0.258 

(0.113) 
 

0.079 
(0.071) 
0.162 

(0.073) 
 

0.467 
(0.178) 
-0.091 
(0.170) 

 
0.530 

(0.136) 
0.109 

(0.062) 
 

0.028 
(0.101) 
0.022 

(0.092) 
 

0.109 
(0.026) 
0.093 

(0.024) 

R2 - adj 
Log-Likelihood 

0.401 0.752 0.670 
-8.997 

0.664 

Number of Observations 48 89 70 63 
White 
Breusch-Pagan 
LM-Err (D50) 
LM-Lag (D50) 
Regional Homogeneity 

15.548 
 

0.073 
0.972 
11.86 

 
 
 
 

27.060 

 
5.326 

 
0.076 
5.26 

 
 

1.692 
1.467 

22.026 
Notes: estimated standard errors are in parentheses; critical value for the White statistic with respectively 20 degrees of freedom is 31.41 (p=0.05); 
critical value for the Breusch-Pagan test for heteroscedasticity is 5.99 (p=0.05); critical values for LM-Err and LM-Lag statistics are 3.84 (p=0.05) 
and 2.71 (p=0.10); critical value for the Chow-Wald statistic on regional homogeneity with 6 degrees of freedom is 16.81 (p=0.01); the spatial 
weights matrix is row-standardized: D50 is distance-based contiguity for 50 miles. 


