
The Regional Economics Applications Laboratory (REAL) is a cooperative venture between the
University of Illinois and the Federal Reserve Bank of Chicago focusing on the development and
use of analytical models for urban and regional economic development. The purpose of the
Discussion Papers is to circulate intermediate and final results of this research among readers
within and outside REAL. The opinions and conclusions expressed in the papers are those of the
authors and do not necessarily represent those of the Federal Reserve Bank of Chicago, Federal
Reserve Board or Governors of the University of Illinois. All requests and comments should be
directed to Geoffrey J.D. Hewings, Director, Regional Economics Application Laboratory, 607
South Mathews, Urbana, IL 61801-3671, Phone (217) 333-4740, Fax (217) 244-9339.
Web page: www.uiuc.edu/unit/real

PyIO: Input-Output Analysis with Python

By

Suahasil Nazara, Dong Guo,
Geoffrey J.D. Hewings and Chokri Dridi

REAL 03-T-23 October 2003

2

PyIO
(read: paI-o)

Input-Output Analysis with Python

Suahasil Nazara, Dong Guo, Geoffrey J.D. Hewings, Chokri Dridi

Regional Economics Applications Laboratory, University of Illinois at Urbana-Champaign

3

Contents

1. Introduction 1

2. Getting started 3

 2.1 About Python and its installation 3

 2.2 Setting up the PyIO 4

 2.3 Inputting an input-output dataset 5

 2.4 Running PyIO: A typical example 7

 2.5 Input-output balance check 9

3. Table operations 11

3.1 Aggregation of input-output tables 11

3.2 Updating matrix: regional supply percentage, location quotient 13

3.3 Updating matrix: RAS method 15

4. Basic input-output analysis 16

 4.1 Leontief and Ghoshian inverse matrices 16

 4.2 Impact analysis 17

 4.3 Multiplier analysis: output, income, employment, input 18

5. Advanced input-output analysis 20

5.1 Key sector analysis 20

5.2 Output decomposition analysis 21

5.3 MPM analysis 22

5.4 Extraction method analysis 24

5.5 Push-pull analysis 26

5.6 Field of influence 28

Reference 28

Appendix: PyIO using functions 30

PyIO: Input-output Analysis with Python

Suahasil Nazara, Dong Guo, Geoffrey J.D. Hewings, Chokri Dridi
Regional Economics Applications Laboratory, University of Illinois at Urbana-Champaign

1. Introduction

This note outlines the use PyIO, a Python module for input-output analysis. It is hoped that this
module will be the first in a series of modules that address different and more complex methods
of analysis based on input-output, social accounting and computable general equilibrium models.
What are included in the current module are functions to perform basic operations and analysis
with input-output models. The module does not provide the capability for assembling or
generating an input-output table; the program assumes that the user has an input-output table
available for manipulation. Further, the program assumes familiarity with the basics of input-
output analysis; readers needing to refresh their recollection of input-output models are referred
to Miller and Blair (1985). In the near future, this manual will be linked to a more extensive text
on input-output analysis that is nearing completion (Sonis and Hewings, 2004).

The applications in this module are derived from input-output analysis conducted by colleagues
at the Regional Economics Applications Laboratory (REAL), University of Illinois at Urbana-
Champaign. The calculations in an input-output framework typically comprise a set of routines.
This point warrants the use of functions in the input-output analysis. For a specific analysis, e.g.,
an extraction method, the computation steps will be identical regardless of input-output of
different years or of different dimensions.

Python is chosen as the basis for this module for several reasons. First, Python is easy to learn
and has great computational capability. It is also possible to build a graphic user’s interface
which frees the user from any requirement to know anything about Python itself. At some point,
the manual will accompany a program that will be prepared in point-and-click form. Secondly,
the core of Python is free. One can download, as well as distribute, all files needed to run this
module freely from the internet. This is of great advantage to many, especially to users in
developing countries where legal access to software such as Matlab or Stata is limited for
various reasons.

This note will outline several functions related to input-output analysis, which are categorized in
three parts below:

2

1. Table operations

• Aggregation of input-output tables
o Aggregating sectors in one region (national) or inter-regional input-output tables
o Aggregating regions in an inter-regional input-output table

• Updating matrix: regional supply percentage, simple location quotient
• Updating matrix: RAS method

2. Basic I-O analysis

• Leontief and Ghoshian inverse
• Impact analysis
• Multiplier analysis: output, income, employment, and input

3. Advanced I-O analysis

• Key sector analysis
• Output decomposition analysis
• Multiplier Product Matrix (MPM) analysis
• Extraction method analysis
• Push and pull analysis
• Field of Influence

Besides for the input-output analysis, inputting input-output data is a very important part in this
python module. For the sake of programming efficiency, PyIO developed at this stage allows
only input from an ASCII text file. This decision was taken to facilitate accessibility to all users
of computer. The general structure is that users need to input the information about input-
output as a text file. When the computation results are ready to be presented, then users will be
asked whether they want those written in Microsoft Excel. If so, Excel needs to be properly
installed, and the results will be shown in a worksheet that is automatically opened. If users do
not want the output in Excel format, then the results will be automatically written in a pre-named
text file.

Aside from the point-and-click environment, it is hoped at a later stage the module would be
able to read the data from wider variety of spreadsheet software. As an object oriented
programming language, Python has that capability. At present, the current module is also
capable only to receive a fairly aggregate input-output structure, i.e., one vector of final demand
and primary input, each. The next version of this module will have greater capability of multiple
types of final demands and primary inputs.

As the final note, the use of this module agrees to the following license and disclaimer:

This software is distributable under the terms of the GNU General Public License (GPL)
v2, the text of which can be found at http://www.gnu.org/copyleft/gpl.html. Installing,
importing or otherwise using this module constitutes acceptance of the terms of this
License.

Disclaimer: This software is provided "as-is.” There are no expressed or implied
warranties of any kind, including, but not limited to, the warranties of merchantability and
fittness for a given application. In no event shall the writer of this code or Regional
Economics Application Laboratory be liable for any direct, indirect, incidental, special,

3

exemplary or consequential damages (including, but not limited to, loss of use, data or
profits, or business interruption) however caused and on any theory of liability, whether in
contract, strict liability or tort (including negligence or otherwise) arising in any way out of
the use of this software, even if advised of the possibility of such damage.

Also, we expect users of PyIO to quote this manual (as the REAL Discussion Paper) as a
reference.

This manual is structured as follows. Section 2, following this introduction, outlines five things
needed to get started. First will explain about the installation of Python and related extensions
needed to run PyIO. Secondly, it will show how to set up PyIO. The third sub-section will
discuss how input-output data are inputted into PyIO. The computation of an impact analysis will
be shown as an example. Fourth section will show a typical example of a PyIO session. The last
sub-section here will discuss the balance check in input-output data. Section 3 to 5 discusses
the functional capabilities of PyIO. The discussion is framed within the three main PyIO
functions: table operation, basic input-output analysis, and advanced input-output analysis.

2. Getting started

2.1. About Python and its installation

Python is a general-purpose open source computer programming language, optimized for
quality, productivity, portability, and integration (Lutz 2001: xix.) It is easy to learn, even as the
first programming language.

While we are aware that Python is frequently updated –at the moment this manual is written,
version 2.3 (beta) is the latest in www.python.org— we suggest users to use Python version 2.2.
We were actually informed that PyIO also works fine with the version 2.3, but no thorough test is
done for that.

The installation of Python should be done in the three steps as the following:

1. Install Python version 2.2. For Windows user, you should download Python-2.2.3.exe
and double click this file to install Python version 2.2.

2. Install the Windows Extension for Python version 2.2. Download Mark Hammond’s

Python for Windows Extensions (http://starship.python.net/crew/mhammond/) which for
Python version 2.2 is named win32all-152.exe.

3. After the above two files are properly installed in your computer, you should also install

the Numerical Python (Numpy), a module for numerical array computation. Windows
user should install Numeric-23.0.win32-py2.2.exe. Once again, Numpy should be
installed only when you have the first two files properly installed in your computer.

Having installed all of the three files, you are ready to use PyIO. You can start by double clicking
run_pyio.py.

4

What hardware is required? Any Pentium-level computer should be able to run Python and PyIO.
The limit is more on the software. The current version of PyIO is intended only for Windows user.
We are really sorry that we cannot accommodate Mac and Linux users. All of the functions in
PyIO offers an output in Microsoft Excel format. If you want this, naturally the Microsoft Excel
should be properly installed in your computer. For those who do not want Excel output, PyIO will
automatically write the results in an ASCII text file.

2.2. Setting up the PYIO

Once Python, the Windows extension and Numpy are properly installed in your computer, you
can download the pyio.zip from REAL website (www.uiuc.edu/unit/real). There are four files
in this zip file: pyio.py, run_pyio.py, PyIOManual.pdf, and data.zip. The first two files
are needed for the PyIO session and may be put in your working directory, PyIOManual.pdf
is the electronic version of this manual, and data.zip contains the data text files used in this
manual. Users can copy the two files pyio.py, run_pyio.py to any directory in their
computer.

You can start your PyIO session by double-clicking run_pyio.py. Three windows will pop up.
The first is a blank window with a title tk on the upper left corner. In all of PyIO application, you
can always ignore this window. The second window is a welcoming page of PyIO, which looks
like one shown in figure 1 below. The third is a verification window. In there, you will be shown
your current working directory, and asked if you want to change the current working directory.
When you have all of your data files (to be explained later) in the same working directory with
the two PyIO files, then there is no need to change the working directory. You may want to
change the working directory if the data files are located elsewhere in your computer.

If you want to change your working directory, for example to c:\work, then write it on the
prompt as shown above. If you do not want to change the working directory, then the PyIO main
menu will appear, as shown below.

Figure 1.
Screen drop to change the
working directory

5

Now, users are ready to do input-output analysis. There are three choices for analysis and an
exit. You can start the analysis by entering the number of your choice (no ‘2’ in the above
screen drop) and press enter.

2.3. Inputting an input-output dataset

Before going further with analysis, it is important to understand how a dataset is inputted in
PyIO. This will be explained in this section.

For illustration, we will use the following hypothetical input-output structure. It comprises eight
sectors with an aggregate final demand and value added.

Table 1. A hypothetical input-output table

Sector 1 2 3 4 5 6 7 8
Final

demand
Total

Output

1 16 5 24 0 6 17 10 0 622 700
2 7 17 11 48 26 0 8 0 203 320
3 43 82 33 13 17 81 51 4 283 607
4 35 9 93 7 19 99 30 2 138 432
5 19 20 19 6 59 16 16 0 220 375
6 15 15 99 45 66 11 12 7 75 345
7 25 22 47 4 42 26 45 1 349 561
8 0 0 75 0 12 7 12 3 78 187

Value
added 540 150 206 309 128 88 377 170
Total
input 700 320 607 432 375 345 561 187

Figure 2.
Screen drop of the PyIO main
menu

6

Let’s say that we want to put the above matrix into an input-output dataset called
datafile.txt. This file is an ASCII file containing the input-output dataset with a particular
sequence as follows:

1. First digit is the number of regions
2. Second digit is the number of sectors
3. Interindustry transaction matrix
4. Output or input values
5. Total final demand values
6. Total primary input values

The first two digits serve as identifiers of the input-output table. These identifiers play an
important role in any subsequent analysis as it determines the type of matrix and, hence, its
corresponding manipulations. An example of a datafile.txt is shown in figure 3 below.

The above input format allows one to input both national (or single-region) input-output tables as
well as interregional input-output (IRIO) tables. To input a national or single region input-output
table, enter ‘1’ in the first digit (look at figure 3 below). The next set of numbers is the
interindustry transactions. PyIO reads the numbers in by each line to the right. Therefore, from
the datafile.txt below we know that 11z = 16, 12z = 5, 13z = 24, etc., where z is the
transaction across sectors. The values of output or input, final demand, and primary input, must
be inputted in the same sectoral sequence with the one in the transactions matrix.

Figure 3. Structure of datafile.txt

To enter an interregional input-output table, put the appropriate number of regions and sectors
as the identifiers. The regional-sectoral sequence is such that the sectoral index runs faster

Number of region

Number of sector

Primary input

Output or input

Primary input

Transaction
matrix

7

than the regional index. If the input-output dataset shown in Figure 3 were actually from an
interregional input-output with two regions and four sectors, then the first two digits would have
been ‘2’ and ‘4,’ respectively. And, the four sectors in region 1 are presented as the first four
rows/columns followed by the four sectors in region 2.

The first three items in the datafile.txt are required, i.e., PyIO can read a text file that only
contains the two identifiers and the transaction matrix. The output, final demand, and primary
input values are basically optional. However, different input-output analysis may require one or
all of the last three items. For example, calculating Leontief inverse matrix requires the
transaction matrix and output values. On the other hand, the extraction method requires all of
the transaction, output, final demand and primary input values.

As shown in Table 1, the absence of a transaction between two sectors should be inputted as a
value ‘0.’ Do not leave a blank to denote a zero value, since the function actually counts the
number of numbers inputted. For example, since the above datafile inputs all items, it has to
have 90 numbers. If the function detects less than that, an error message will appear. If the
dataset does not include primary input values, then the text file should have 82 numbers, and so
on.

2.4. Running PyIO: A typical example

This part will show a typical PyIO session. For an illustration, we will do an impact analysis
using the datafile.txt shown above, calculating the output impact of different scenarios of
final demand. These scenarios should also be inputted to PyIO and they should be regarded as
additional information needed to conduct the analysis. Different input-output analysis may
require different additional information, which should be structured in an ASCII file in a particular
structure. Regardless of the different structures, all of the additional information files should
contain the first two identifiers, which must be identical to ones in the primary input-output text
file (in our example here is datafile.txt). When the identifiers in the primary input-output file
and in the additional information file are not identical, an error message will pop up.

Let’s show how an impact analysis is conducted in PyIO. Assume that we have three economic
scenarios that we want to check. These scenarios are stored in a text file called sce.txt, each
line in the file represents a scenario. A more detail requirements for this scenario file will be
discussed later in section 3. Here, the main purpose is to show how a session works.

Having uploaded the PyIO, users will see the main menu as shown in figure 2 above. The
impact analysis is listed under the Basic I-O Analysis, so enter number ‘2’ and press enter.
Then, we enter the Basic I-O Analysis menu. The impact analysis is listed there as one of
the analysis. So, enter number ‘3’ and press enter again. Users will be asked to input the
primary input-output data. Write: datafile.txt and press enter. Note that the file name
should be inputted fully, including its txt extension. Then, users will be asked to input the
additional information file. Thus, write: sce.txt. The window would seem like figure 4 below.

8

At this point, when PyIO cannot find the two files datafile.txt and sce.txt in the working
directory, PyIO will close itself automatically. Users will have to upload the session by double-
clicking run_pyio.py again.

Alternatively, when everything works fine, users will be asked whether the computation results
should be printed in Microsoft Excel. If so, then the Microsoft Excel should be properly installed
in the computer. For this impact analysis, the Excel output is given below (figure 5).

If Excel output is not preferable, the computation result will be stored in a text file. This text file
will be automatically given a name, typically in accordance to the type of analysis, stored in the
working directory. The information in this text file is typically similar to the one presented in
Excel output.

The Excel report typically
contains the title of, and some
background information
about, the type of input-output
(national or interregional), the
number of sectors involved,
and the file names of the
primary input-output data and
the additional information, if
any.

Figure 5
Typical Excel report in PyIO

Figure 4.
Typical PyIO session

9

The Python computation is fast. However, writing the results to Excel may take some significant
amount of time, especially when the analysis involves an input-output of larger dimensions. For
an illustration, it takes about 45 seconds to write elements of a 30x30 Leontief inverse matrix
(i.e., 900 cells) in Excel using a Pentium IV 2.1 GHz. On the other hand, writing down results to
a text file (i.e., saying ‘no’ to the question whether output should be printed in Excel), is done
also very fast. Therefore, for some analysis, users may alternatively want to save the results
first in a text file, and open this text file in Excel. For some very large input-output analysis, this
alternative sequence may save time.

When all computation and writing results (either to Excel or to a text file) is done, a ‘Well-done’
window will appear, followed by another window asking whether users would like to exit the
Basic I-O analysis. If no, users will stay in the Basic I-O analysis menu, and
another PyIO session can be started. If users choose to exit the Basic I-O analysis, users will be
checked whether they want to exit PyIO. If so, then the PyIO will stop. Otherwise, users will be
brought back to the main menu (see figure 2), and another PyIO analysis can be executed.

2.5. Input-output balance check

An important part of PyIO capabilities is the input-output balance check, in particular when the
input-output inputted involves the final demand and/or primary input vectors. The balance
checking, in essence, evaluates whether the inputted output (i.e., the output data as written in
the input-output text file) is identical to the computed output (i.e., the output data as computed
using transactions, final demand and primary input vectors.) This balance check is carried out
every time PyIO opens an input-output text file with final demand and/or primary input vectors.

When the inputted and computed output data are identical, then PyIO will move on with the
designated computation. When the two are not the same, a warning window will pop up. Users
then can choose whether to continue or halt the computation. Important note: when users
choose to move on with the analysis, PyIO will use the inputted (and not the computed) output
in the computation. In either case, i.e., continuing with or halting the computation, PyIO will write
a text file containing detail information about the nature of unbalance data.

For an illustration of this capability, let’s make two changes in the correct (balanced) input-
output data as shown by figure 3. These changes are:

1. The output sent from sector 1 to sector 4 is changed to 10 (from the correct one 0).
2. The output sent from sector 2 to sector 1 is changed to 7.2 (from the correct one 7).

We know exactly that this will create an unbalance input-output data since we do not change the
rest of the values. Let’s call this new data data1.txt, and use this file to generate the Leontief
inverse matrix. This analysis is listed as the first analysis in the Basic I-O Analysis. Having
entered number 2-1 from the main menu, users will be asked to input the name of input-output
text file. Enter data1.txt here, and you should have a window similar to figure 6(i) below.
Since the input-output data contained in data1.txt are not balance, then an error window
pops up, as shown in figure 6(ii).

10

(i)

(ii)

Regardless whether users want to stop or continue with computation, a text file containing the
detail of the error is created and named after the primary input-output data. In this example, this
error information is automatically named data1_Err101.out. Clicking ‘Yes’ in the warning
window will get PyIO to continue the computation of the Leontief inverse matrix, and users can
see the error file data1_Err101.out later. Clicking ‘No’ will stop the computation of the
Leontief inverse matrix.

Figure 6.
(i) PyIO session for Leontief
inverse;
(ii) Unbalance data prompt

Figure 7
Contents of error
information file

11

The error report starts with the title and the name of input-output text file being examined. The
unbalance criterion deserves some attention here. PyIO acknowledges that the criterion should
not be based on the level of differences between the inputted and computed outputs, because
one input-output table may have entries in the vicinity in thousands, others may have ones in
the vicinity of millions. Thus, a difference in a magnitude of ‘1’ can mean one thousand or one
million, depending on the input-output table at hand.

Therefore, PyIO chooses different criterion: the ratio of the differences (between the inputted
and computed outputs) to the total output, for each sector. There is still another problem. Some
sectors may be markedly different in magnitude from others. In the real input-output, some
sectors may have output at a 7-digit magnitude while others, because they are not so connected
to the rest of the economy, may be only at 3-digit magnitude. In order to demote this problem,
PyIO takes the average number of (output) digits from each of the sectors, denote this as k, and
uses 10-k as the benchmark. That is, the ratio between the difference (between the inputted and
computed outputs) and the total output should not be greater than 10-k. In the above example,
all of the outputs are at 3-digit magnitude. Thus, the criterion is that the difference, as the ratio
to the actual output, should not be more than 10-3, or 0.001.

The actual reporting of differences, by sector, follows. Note that the error file reports the actual
differences, and not the ratio. The difference is positive (negative) when the inputted is greater
(smaller) than the computed values. An asterisk is put to the right of the difference (either
column or row), when it actually exceeds the benchmark. In the above example, the first change
results in a difference greater than the benchmark, while the second change does not.

3. Table operations

3.1. Aggregation of input-output tables

The aggregation of input-output tables is a common procedure in input-output analysis. In the
case of a national table (or one region table), aggregation of input-output tables can be
conducted between sectors, while in the case of inter-regional input-output both sectoral and
regional aggregations can be considered.

Suppose we want to aggregate an n-sector input-output table into a k-sector specification,
where n is greater than k. A crucial element in the aggregation procedure is the construction of
an aggregation matrix S that is of k×n dimension. For example, to aggregate sector 2 and sector
3 in a 4-sector input-output table, the aggregation matrix will be:

1 0 0 0
0 1 1 0
0 0 0 1

 
 =  
  

S (1)

The new transaction matrix, total output, final demand for the aggregated table can be
accomplished by multiplying the aggregation matrix S with the original transactions matrix. Let

12

NT and T be the new transaction matrix and old transaction matrix respectively, NX and X be
the new and old total output, NF and F be the new and old final demand.

=
=
=

'NT STS
NX SX
NF SF

 (2)

Note that to aggregate sectors or regions in the inter-regional input-output table a similar
procedure is followed to sectoral aggregation scheme except for the different structure of the
aggregation matrix.

The table aggregation requires a file containing the aggregation information, i.e., how sectors
are aggregated together. Note that each line in this aggregation info file will form a new sector.
Let’s show an example when we want to aggregate the input-output table shown in table 1, from
an 8-sector to a 4-sector classification. Suppose that we name the aggregation info file as
agg_info.txt. Figure 8 below shows a typical aggregation criterion and its corresponding
agg_info.txt. Note that the aggregation info text file does not require the usual two
identifiers about the number of regions and number sectors.

A valid agg_info.txt has several requirements. First, each of the old sectors must only be
used once in the new sector structure. Second, the agg_info.txt file should have no blank
lines. PyIO will return an error in either case.

New sector Old sector
1 1,6
2 2,3,4
3 5,7
4 8

Figure 8. Aggregation and agg_info.txt

When prompted by PyIO, users should input the file names of the primary input-output text file
and the aggregation information file. Results can be written either in Microsoft Excel or text file.
In Excel file, there will be two worksheets: one named “aggregated table” describes the
aggregated table, the other one named “agg_info” shows that corresponding aggregation
information between the new table and the old one. The text file of the results contains the same
information as the Excel file, with a name of “agg_” being a prefix, “.out” being the suffix of
data file.

PyIO automatically creates a new input-output text file for the newly aggregated table. Since the
primary input-output is named datafile.txt, the aggregated input-output text file is named
datafile_new.txt. The contents of this new text file depend on the contents of the primary
input-output table. If the primary file contains output, final demand and primary input, then the
new text file will also do so.

13

Finally, aggregation not only can be done in terms of sectors, but also in terms of regions.
Usually this procedure is applied to an interregional input-output table. The aggregation
information file will then pertain to the number of regions, rather than number of sectors. In the
regional (or spatial) aggregation, the composition of sectors is intact. Aggregating an
interregional input-output table in terms of sectors and regions can thus be done in two steps.

3.2. Updating an input-output table

Updating techniques are widely used in input-output analysis to overcome the expensive cost of
producing new tables from surveys. Updating an input-output can be done using either non-
survey or partial-survey methods. At this point, the program includes two functions to update an
input-output table using non-survey methods: one employs the location quotient, and the other
uses the regional supply percentage. These two functions will be elaborated in this section. A
partial-survey method, known as the bi-proportional or RAS method, is elaborated in the
subsequent section.

The regional supply percentage and location quotient are commonly used to regionalize a
national input-output table. This technique is frequently used when the only available input-
output data is the national table supplemented by regional data, such as gross output or
employment by sector.

The regional supply percentage in region R in each sector i (R

ip) can be computed as the
following:

−=

− +

R R
R i i
i R R R

i i i

X Ep
X E M

 (3)

where X, E and M respectively denote output, export and import. The magnitude of the regional
supply percentage lies between 0 and 1, with the higher end corresponding to regional self-
sufficiency in sector i. To adjust the national table, each row of the national A matrix will be
multiplied by the appropriate percentage. In matrix notation this is written as ˆ=RRA PA , where

RRA is the regional input coefficient matrix, P̂ is the n-element vector of regional supply
percentage, and A is the national input coefficient matrix.

The location quotient also measures some degree of self-sufficiency at the regional level. Here
we will use the simple location quotient, which for region R and sector i is defined as

/
/
Σ=
Σ

R R
R i i i
i N N

i i i

X XSLQ
X X

 (4)

where the superscript R and N, respectively, denote regional and national data. The updating
criteria are given as the following:

14

() if 1

if 1

 <=  ≥

N R R
ij iRR i

ij N R
ij i

a SLQ SLQ
a

a SLQ
 (5)

The additional information required to compute the regional supply percentage (and also the
simple location quotient) should be inputted in a separate ASCII text file. This file, as usual,
should contain identical identifiers with the primary input-output data file.

Suppose that we want to update the input-output table as shown datafile.txt. Let’s say that
datafile.txt is a national input-output table, and we want to generate a regional input-
output for region R using the regional supply percentage method. Thus, the information to
calculate the RSP for region R should be inputted in another text file, let’s name it
region_R.txt. This file should contain the values of exports, imports, and output (exactly in
that sequence) for each sector in the economy. Thus, this file should contain exactly 2+3d
numbers, where d is the number of sectors.

Differently, suppose we want to update datafile.txt to generate a regional input-output
table for region S using the simple location quotient method. The information needed is the
national and regional dataset to compute the location quotient. Again, this information should be
inputted in another text file, for example let’s name it region_S.txt. In addition to the usual
identifiers, this region_S.txt should contain values of national and regional sectoral
variables (exactly in that sequence). This file should only contain 2+2d numbers, where d is the
number of sectors. Note that users can use any kind of national-regional dataset to compute the
location quotient. Among those variables that are of common interest are output, employment or
income.

Having inputted the appropriate file names of the primary input-output data and the updating
information file, users will be asked whether they want to create a new datafile based on the
new regional input coefficient matrix. This datafile may be used for subsequent input-output
analysis in PyIO. The new datafile will be a text file (.txt) with the same name as the earlier
updating info file plus a suffix ‘_RSP’ when the updating uses regional supply percentage
method, and ‘_SLQ’ when the updating uses the simple location quotient. In our example above,
the new data file for region R will be named region_R_RSP.txt, and that for region S would
be region_S_SLQ.txt. This new data file will only contain the usual identifiers, transaction
matrix and output. To use this new datafile in PyIO analysis that requires more data (i.e., final
demand and primary input), users need to enter them manually using a text editor.

To create a new data file using SLQ method, users need to input another text file containing the
regional output. This text file is needed, because using SLQ, no information is given about the
extent of regional output. This file, as usual, needs to contain the usual two identifiers and the
sectoral regional output. This file should contain 2+d numbers, where d is the number of sectors.
This regional output text file is not needed for the RSP method. The reason is because the
regional output data has been earlier inputted in the updating information text file. PyIO takes
the regional output data directly from this file. The example for this regional output text file can
be seen in file output_S.txt.

As usual, the new regional input coefficient matrix can be printed in Microsoft Excel. If users do
not want the output in Microsoft Excel format, an output text file will be created. It will be named

15

using the datafile name, plus a suffix _SLQUpdate.out or _RSPUpdate.out. In the
output text file, only the newly updated A matrix is presented.

3.3. RAS method

A widely used partial survey method to update an input-output table is the bi-proportional or
RAS method. This method is commonly used to update an input-output matrix over a short
period of time as well as to adjust a national table in order to derive a regional matrix. A lengthy
exposition of this technique can be found in Chapter 8 of Miller and Blair (1985).

The method finds a new input coefficient matrix A in, for period t given the prior A matrix in
period 0, and some additional information for period t. The period t information needed are
sectoral allocation of intermediate output (U), sectoral allocation of intermediate input (V) and
sectoral output (X). The general structure of the RAS method is

 2 1 1[] (0)[]= … …n n nA R R A S S (6)

where (0)A is the prior matrix to be adjusted using series of adjustments coefficients
represented in 1[]…nR R and 1[]… nS S . In the actual computation, the method involves a
series of iterations up to the point where the absolute difference between the row (and column)
sums of transaction (i.e.,AX) matrix and the values of U (and V) are less than 0.001. This
convergence criterion should be good enough for any reasonable application of RAS method. In
the case that the iterations do not get to satisfy the convergence criteria, PyIO will stop at the
50th iteration, and the A matrix obtained at that step will be used in the reporting.

In PyIO application, the RAS method actually updates the input coefficient A matrix. In several
applications, the user may wish to update the transactions matrix rather the input coefficient.
This can be easily done by inputting the transaction matrix in the input-output data file, and put
values of 1 as output values.

The updating information –vectors U, V and X – should be inputted in a separate text file. The
structure of this ASCII text file follows the standard format with two usual identifiers in the
beginning. The rest must be sequenced as follows: sectoral allocation of intermediate output
(U), sectoral allocation of intermediate input (V) and sectoral output (X). Let’s suppose this file
is named time_t.txt, as shown below.

Users will be prompted to decide whether to specify a new datafile based on the updated
regional input coefficient matrix. This new datafile may further be used for subsequent
computation of Leontief inverse, impact analysis or other analysis in PyIO. To use this new
datafile in PyIO analysis that requires more data (i.e., final demand and primary input), users
need to enter them manually using a text editor.

16

Figure 9. Structure of time_t.txt

The new data file will be a text file (.txt) with the same name as the earlier input-output data
file, plus a suffix ‘_RAS’. This new data file only contains the usual identifiers, transaction and
output. To use this new datafile in functions that requires more data (i.e., final demand and
primary input), users need to put them manually using a text editor.

As usual, the new regional input coefficient matrix can be printed in Microsoft Excel. Otherwise,
a text file will be created. Given the file names above, this output text file will be named
time_t_RASUpdate.out.

4. Basic input-output analysis

4.1. Leontief and Ghoshian inverse matrices

The generation of multipliers from input-output models may be considered as one of the most
popular uses of the modeling system. Impact analysis (illustrated in section 4.2) provides
insights into the way in which changes in one sector of an economy affect all other sectors; the
magnitude of these impacts, the strengths of the linkages between sectors, the size and
complexity of the economy all combine to produce a range of multiplier values. In this section,
multipliers generated from the Leontief and Ghoshian inverses will be presented; in addition to
their use in impact analysis, these multipliers also appear as part of key sector analysis
introduced in section 7.

The Leontief inverse is practically the most widely derived matrix from an input-output table.
While the Leontief inverse is based on the input requirement matrix []ija=A , the Ghoshian

inverse is based on the output allocation matrix []ija=A
G G

. The elements of these matrices are
computed in the following way:

Number of region

Number of sector

U data

V data

X data

17

 = ij
ij

j

z
a

X
 and =G ij

ij
i

z
a

X
 (7)

where ijz is the input from i required in the production of j (or in Ghoshian structure is the output
of i sent to the production to j), and X is the total input or output. In practical terms, the input
requirement matrix is obtained by dividing each cell in the transaction matrix with its
corresponding input in each column; while the output allocation matrix is obtained by dividing
each cell in the transaction matrix with its corresponding output in each row. The Leontief
inverse matrix is then computed as 1()−−I A , while the Ghoshian inverse is then obtained by

1()−−I A
G

.

In PyIO, the computation of these inverses requires an input-output text file that contains at the
minimum the transaction and output data. Users will also be prompted to indicate whether
Microsoft Excel format is preferred. If so, a Microsoft Excel worksheet will be opened, and the
Leontief or Ghoshian inverse matrix will be written. If users do not want the Microsoft Excel
format, the output will be presented in an ASCII text format, placed in the same working
directory. For our datafile.txt the output text file of Leontief inverse will be named
datafile_LeontInv.out and that of Ghoshian inverse will be datafile_GhoshInv.out.

The maximum number of sectors (or combination of region-sector) that an input-output dataset
can have is limited by the fact that an Excel worksheet only has 256 columns. If you are dealing
with an input-output dataset with greater number of dimensions, do not send the output to
Python when prompted by the function. Instead, send it to an output text file, and you can easily
open this file in Excel spreadsheet.

4.2. Impact analysis

Impact analysis is one area where input-output is widely used; applications here typically require
the analyst to prepare an estimate of the impact of a change in one or more sectors on the
economy as a whole or on individual sectors. The analysis computes a new set of output if the
economy is given new hypothetical values of final demand. In particular, the usual formula is

1()−= −X I A F where X is output, 1()−−I A is the Leontief inverse, and F is final demand.

The impact analysis requires the scenarios to be inputted in a separate text file. This text file
should contain the two identifiers and final demand scenario(s). Earlier in section 2.3 we have
seen typical scenarios inputted in a file named sce.txt. As shown, PyIO is capable of
handling multiple scenarios of final demands. Practically, there is no limitation on the number of
scenarios, for which output impact, that PyIO can compute at one shot. More limitation is put by
the Excel spreadsheet, because the output impact of each scenario is reported in Excel column.
Since an Excel worksheet only contains 256 columns, then this is the maximum number of
scenario that sce.txt can contain, if users want the output in Excel file. If output will be later
stored in an output text file, this limitation does not apply.

18

As before, the code will read sce.txt file by line to the right. Therefore, it does not really
matter if the scenarios are stacked to the right, instead of line by line. What really matters is the
fact that the sectoral sequence of each scenario must conform to one in the datafile.txt.
As before, the final demand scenario in the interregional input-output framework is easily
constructed using the two identifiers in the beginning of this scenario text file. The regional-
sectoral sequence of the scenarios must also conform to the regional-sectoral sequence in the
interregional transaction matrix.

If one chooses to have the output in Microsoft Excel format, the PyIO will open a Microsoft Excel
file. Two worksheets will be written: ‘Final Demand Scenarios’ and ‘Output Impact.’ The ‘Final
Demand Scenarios’ worksheet will rewrite the scenarios given in sce.txt, and the ‘Output
Impact’ worksheet will produce the corresponding output impact. Each final demand structure
and its corresponding impact are arranged in each column.

If users choose not to have the output in Microsoft Excel format, then an output text file is
automatically created. Given that the scenarios above is contained in sce.txt, then the output
text file is written to a file named sce_Impact.out.

4.3. Multiplier Analysis

Following Miller and Blair (1985), there are four types of multipliers that are possible to calculate
from an input-output matrix: output multiplier, income multiplier and employment multiplier. The
output multiplier is calculated as the column sum of the Leontief inverse. Given that []ijb=B as

the Leontief inverse matrix, then the output multiplier for sector j, denoted by jO , is given by

1=

=∑
n

j ij
i

O b (8)

where n is the number of sectors. The computation of income multiplier requires the use of
wage vector (in the primary input table) to calculate the household input coefficient. This
coefficient makes up the (n+1)th (household) row that is used in closing the model with respect to
households, indicating household income received per dollar’s worth of sectoral output (Miller
and Blair, 1985: 105.) Denoting this coefficient with 1,+n ia , it is defined as 1, 1, /+ +=n i n i ia z X where
z is transaction and X is output. Given the Leontief inverse B, the household income multiplier is
formulated as

 1,
1

+
=

=∑
n

j n i ij
i

H a b (9)

The employment multiplier would require the use of sectoral employment to calculate the labor
input coefficient. This coefficient 1,+n iw is given as 1, /+ =n i i iw e X , where e is the employment.
The employment multiplier for sector j is then given by the following formula

19

 1,
1

+
=

=∑
n

j n i ij
i

E w b (10)

Finally, the input (or supply) multiplier is computed from the Ghoshian inverse. The actual
computation is identical to the output multiplier, given a Leontief inverse matrix. Therefore, if

1[] ()ijb
−= = −B I A

G GG
, then the input (or supply) multiplier is given as

1

n

j ij
i

O b
=

=∑
G

 (11)

As should have been clear, the computation of input or output multiplier does not require any
information other than the primary input-output text file. However, the computation of income, or
employment multiplier does require additional information. Income multiplier requires data on
income, which are typically inputted as parts of the primary input matrix. This information should
be inputted in a separate text file, that contains the usual two identifiers and the sectoral total
income values. In the input-output application, income is typically generated by the wages and
salaries. More broadly, one may also assume that income comprises wages, salaries, operating
surplus (profit) and interest payment. In any case, the income data inputted in this information
file to compute income multiplier should be the total income. This file should only contain 2+d
numbers, where d is the number of sectors in the input-output data. An example of this file can
be seen in income.txt.

On the other hand, the computation of employment multiplier requires additional text file
containing the number of employment by sectors. This data is not a part of the input-output table,
so they should be elsewhere found. Again, this file only contains 2+d numbers, where d is the
number of sectors in the input-output data. An example of this file can be seen in employ.txt.

As usual, users will be asked whether output in Microsoft Excel is preferred. The output in
Microsoft Excel will also contain the type of input-output model being employed (national or
interregional) with its corresponding dimensions. The reporting format in Excel for each
multiplier allows for a very large dimension of input-output. At this moment, the maximum
number of Excel rows is more than 65,500 lines, which practically puts no limit on the input-
output dimension for the multiplier analysis.

If Microsoft Excel is not preferred, an output text file will be automatically created. The name of
this output text file will be taken from the name of primary input-output text file, plus a suffix
_[type]Mult.out where [type] can be Out for Output, Inc for Income, Emp for Employment
multiplier, and Inp for Input multiplier. For example, the output multiplier of the earlier
datafile.txt will be written to a text file named as datafile_OutMult.out.

20

5. Advanced input-output analysis

5.1. Key-sector Analysis

Key sector analysis is widely used in input-output analysis. It aims to identify those sectors
whose economic activity exerts a greater than average influence on the whole economy. Policy
makers interested in industrial targeting, government officials considering incentives for new
industry, or school officials anxious to estimate the fiscal impact of the closure of a major firm or
government installation are all users of key sector analysis. In essence, the search for key
sectors is based on an assumption that some activities in an economy have the potential to
generate greater growth and through their backward and forward linkages, spur the growth of
the rest of the economy. The idea has always been controversial; many authors have claimed
that the methods used to identify key sectors are based on ex post relationships and provide no
indication of the future prospects for these sectors. Further, the idea that all sectors are
interdependent and yet a subset of these are key sectors may appear to be contradictory; the
non key sectors may be the “glue” that holds the economy together. Two other methods are
closely associated with key sector analysis – the extraction method (described in section 12)
and cluster analysis. The methodology for cluster analysis will be included in a future volume
of the software.

In this section, key sectors are identified by calculating backward and forward linkage proposed
by Rasmussen (1956) drawing on entries in the Leontief inverse. Let 1() []ijb

−= − =B I A be the

Leontief inverse matrix and let jB⋅ and ⋅iB be the column and row multipliers of this Leontief
inverse. The sector j’s backward linkage (jBL) and forward linkage (iFL) are defined as:

V
n

B

V
n

B
n

b
n

b
nBL j

j

n

ji
ij

n

i
ij

j 11

1

1

1

2
1,

2

1 ⋅
⋅

=

= ===
∑

∑
 and

V
n

B

V
n

B
n

b
n

b
n

FL i
i

n

ji
ij

n

j
ij

i 11

1

1

1

2
1,

2

1 ⋅
⋅

=

= ===
∑

∑
 (12)

where, ∑
=

⋅ =
n

i
ijj bB

1
, ∑

=
⋅ =

n

j
iji bB

1
and ∑∑

= =

=
n

i

n

j
ijbV

1 1
.

The usual interpretation is to propose that, if jBL >1, a unit change in final demand in sector j

will generate an above-average increase in activity in the economy. Similarly, for iFL >1, it is
asserted that a unit change in all sectors’ final demand would create an above average increase
in sector i. Thus, a key sector is identified as one having both indices greater than 1.

As usual users will be prompted whether results in Microsoft Excel is preferable. If so, a
Microsoft Excel file with two worksheets will be opened. The first worksheet, named Key
Sectors, shows the unsorted backward and forward linkages. The second worksheet, named
Linkages indicators, presents the sorted backward and forward linkages. If output in Microsoft
Excel is not preferable, then the output will be written in an output text file named after the

21

primary input-output text file. In our example using the datafile.txt, the output file for the
key-sector analysis will be datafile_KeySector.out.

5.2. Decomposition of output changes

The decomposition technique analyzes differences in two-period sectoral output into three
different parts. The technique is based on Sonis et al. (1996), where they note that the output
change ∆X can be stated in the following way:

()()
∆ = −

= + ∆ + ∆ −
= ∆ + ∆ + ∆ ∆

= ∆ + ∆ + ∆

tt 0 0

0 0 0 0

0 0

f B Bf

X B f B f
B B f f B f
B f Bf B f

X X X

 (13)

where X is output, B is the usual Leontief inverse, and f is final demand, subscripts ‘0’ and ‘t’
denotes two time periods. The decomposition results in three different components. The first
component (∆ fX) is the part of output change that is due to changes in final demand. The
second component (∆ BX) pertains to the output change that is due to technological progress
(i.e., due to changes in the Leontief inverse matrices), and the last part (∆ BfX) is the part due to
synergistic interaction between final demand and technological change.

Further, the decomposition can be made to trace the output changes by determining whether
they originated from the sector itself or from other sectors in the economy. The two components
are referred to as self-generated and non-self-generated changes, respectively. For a certain
sector i, self-generated changes can be obtained by using iib , if , and their changes through

time. If s∆X represents self-change of output, ns∆X represents non-self-change of output, the
self-change and non-self-change of each part in will be:

iib=fi is∆X ∆f ; = −f f f
i i ins∆X ∆X s∆X

iib= ∆B
i is∆X f ; = −B B B

i i ins∆X ∆X s∆X

iib= ∆Bf
i is∆X ∆f ; = −Bf Bf Bf

i i ins∆X ∆X s∆X

For the PyIO session, the two IO data files, with identical identifiers, should have the minimum
information of transactions, output and the final demand. After the decomposition is preformed,
the user will again be prompted to choose whether output in Microsoft Excel format is preferred.
If users do not want the output in Excel then the output will be automatically written in an output
text file at time-t with suffix “_Decomp.out.” In these reports, nine parts of the above
decomposition are reported: , ,∆ ∆ ∆f B BfX X X are denoted as Decom_1, Decom_2 and
Decom_3; , ,f B Bf

i i is∆X s∆X s∆X are denoted as SelfCh_1, SelfCh_2, and SelfCh_3, and

22

, ,f B Bf
i i ins∆X ns∆X ns∆X are denoted as NonSelfCh_1, NonSelfCh_2, and NonSelfCh_3,

respectively.

5.3. MPM Analysis

The structure of economies change over time; users interested in providing a visual appreciation
of structural changes can easily accomplish this with use of a simple method to be presented
here. If the interest is in comparing the structure of two economies at the same point in time,
then the same methodology will be of value. The input-output multiplier product matrix (MPM)
is a visualization technique derived from the Leontief inverse matrix. The MPM matrix, M, is
defined as (see Sonis et al. 1997):

()
1

2
1 2

1 1
⋅

⋅
⋅ ⋅ ⋅ ⋅ ⋅

⋅

 
 
    = = =     
  
 

"
#ij i j n

n

B
B

m B B B B B
V V

B

M (14)

where []= ijbB is the Leontief inverse, V is the grand sum of rows and columns of B or

1 1= =

=∑∑
n n

ij
i j

V b ,
1=

=∑i

n

i ij
j

B b and
1=

=∑i

n

j ij
i

B b . Note that the column and row multipliers from MPM

are the same as those from the Leontief inverse matrix:

1 1

1
⋅ ⋅ ⋅

= =

= =∑ ∑
n n

ij i j i
j j
m B B B

V
 and

1 1

1
⋅ ⋅ ⋅

= =

= =∑ ∑
n n

ij i j j
i i
m B B B

V
 (15)

Thus, the MPM structure is essentially connected with the properties of sector backward and
forward linkages. The rows and columns of matrix M can be rearranged along the magnitude of
the values of backward and forward from the largest to the smallest to provide the hierarchy of
backward (for columns) and forward (for rows) linkages. Using the MPM matrix, it is possible to
construct economic landscapes to provide a summary view of the economic structure.

One use of the MPM is to trace the structural change over time. Sonis et al. (1997) suggested
to ”freeze” the ordering of rows and columns at one point in time, and to use this ordering to
compare the economic landscapes from different time periods. The analysis highlights the
extent to which the structure has remained stable or changed over time. If the hierarchy is the
same, the structure has not changed; disruptions to the hierarchy at subsequent periods provide
a sense of the magnitude of the changes. Detailed sector-by-sector analysis can thus focus on
the sector(s) in which the dominating changes have been observed.

When the MPM Analysis is chosen (no. 3 in the Advanced I-O Analysis), users will be
prompted to several questions. First asks the number of years involved in the analysis. Second
asks the year which is going to be used as the benchmark year. Note that in PyIO the
numbering of years starts with 1 (not 0). For example, if users wants to do an MPM analysis

23

involving two-period input-output and uses the first year as the benchmark, then they will
answer the first question with ‘2’ and the second question with ‘1.’ Following those two
questions, user will then asked to input the names of input-output text files for the MPM analysis.

Figure 10. Screen drop of MPM Analysis in PyIO

The results will be written either as Excel or text file upon users’ preferences. In Excel, the
number of worksheets will be (2 × number of years + 1). For our example, since the analysis
involves two years of input-output, then there are 5 worksheets written. See the screen drop
below (figure 11). The first two are named as “MPM-1” and “MPM-2” containing MPM results
written in the sector order of its own time. See that the sectors are ranked, and these ranks are
different for time-1 and time-2. The next two worksheets named “MPM (ordered)-1“ and “MPM
(ordered)-2“ show the MPM results in the sector order of time-1 (i.e., the benchmark year).
The last worksheet is “Datafiles” listing two files corresponding to time-1 and time-2.

Figure 11. Screen drop of Excel results of MPM

See figure 10 on the left.
Naturally, each period input-
output should be inputted in a
text file. In the example here,
suppose that the two input-
output text files are
data1.txt & data2.txt.

24

If results written in text file are preferred, there will be a warning message to tell users that the
results will be saved as a text file in the working directory. Given the above file names, this
output text file will have name data2_MPM(2,1).out. The numbers in parentheses pertain to
the number of years and the benchmark year (i.e., answers to the first two questions in the PyIO
session of MPM).

5.4. Extraction Method

The extraction method in input-output system was initially suggested by Strassert (1968) and
Schultz (1976, 1977). The method analyzes the importance of a sector or region by
hypothetically extracting that particular sector or region from the input-output system – what
would happen to the structure of the economy if the sector “disappeared.” The output
differences between the with and without that region or sector are then analyzed, and are
generally considered as the importance of the extracted element. Several measures have been
proposed in the literature to actually quantify the output differences (e.g., Cella 1984, Clements
1990, Dietzenbacher et al. 1993, and Dietzenbacher and van der Linden 1997).

The code presented here computes the backward linkage and forward linkage of the extraction
method as outlined in Dietzenbacher et al. (1993). The importance of a sector or region is
presented in terms of the backward and forward linkages between a system with and without
the extracted element. Further, the backward linkage is computed in terms of the Leontief
inverse while the forward linkage is obtained using the Ghoshian system.

The output difference between the full and the extracted system can be estimated from the
following equation (Dietzenbacher et al. 1993):

1 1 11 1 11 1 1

1 1

() 0
0 ()

−

−

        − − − = = −       − −         

R

R R R RR RR R

x x L L I A f
x x

x x L L I A f
 (16)

where x denotes output, L is the Leontief inverse matrix, A is the input requirement matrix, f is
the final demand vector, superscript ‘1’ and ‘R’ denotes the extracted region or sector and the
rest of the system, respectively.

The above measure pertains to the backward linkage of the impact. In terms of the forward
linkage, the difference is as follows

() ()
11 1 11 1

1
1 1

() 0
0 ()

−

−

    −′  ′ ′− = −    −     

R
R

R RR RR

G G I B
x x v v

G G I B
 (17)

where v denotes the primary input vector, G is the Ghoshian inverse, B is the output allocation
matrix, and the rest is as previously defined. See Dietzenbacher et al. (1993) for further
elaboration of the extraction method.

The extraction method in PyIO requires an input-output text file with complete information, i.e.,
containing identifiers, transactions, output, final demand and primary input. When the input-

25

output file contains a national (or one-region) input-output matrix, the function will do sectoral
extraction: extracting one sector at a time to compute the extraction impact of that sector. If the
input-output data is actually an interregional input-output table, the function will do regional
extraction: extracting one region at a time to compute the extraction impact of that region. Note
once again that the interregional input-output dataset should be inputted in such a way that the
sectoral index moves faster than the regional index.

For this extraction method, results can only be seen in Excel. So, users need to say ‘yes’ for
output in Excel. Two Excel worksheets will be loaded: one for backward linkage and the other
for forward linkage computations. In the header of these two worksheet is written some
background of the input-output, i.e., whether it is a national (or, one-region) or interregional
input-output and the number of sector/regions in the data.

The structure of output should be read in the following way. Let us use the national input-output
table as is inputted by datafile.txt. See the screen drop below:

Figure 12. Screen drop from extraction method

Each of the columns on the above matrix provides the sectoral impact if the sector in that
column is hypothetically extracted from the input-output system. However, the first row
indicates the impact on its own sector. This result has a direct link to the equation (16), where
the extracted sector is placed as the first element in the impact matrix −x x . In this sense, the
sector # given in the leftmost column should be read cautiously.

The first column gives the output impact when sector 1 is hypothetically extracted from the
system. Thus, 63.450 is the impact to sector 1 when that sector is hypothetically extracted.
Dietzenbacher et al (1993) called this the feedback effect. Also, 19.044 in the first column
indicates the impact to sector 2 when sector 1 is extracted. Likewise, the second column gives
the sectoral impact if sector 2 is extracted from the input-output system. The first element in this
column is the impact to sector 2 when sector 2 itself is extracted from the system. The next
element, 13.030 is the impact to sector 1 when sector 2 is extracted, and the next element
106.302 is the impact to sector 3 when sector 2 is extracted and so forth.

26

The result for the forward linkage computations should be read in a similar manner as the
backward linkage computations.

The same cautions should also be used when dealing with this analysis when applied to an
interregional input-output dataset. As mentioned earlier, in the interregional framework, the
extraction works by each region, not by sector. Therefore, the output impact will comprise r
columns, where r is the number of regions in the system; and d rows, where d=r*n is the
number of input-output dimension. The first n rows of the matrix pertain to the own-region
impact of extracting the region from the interregional system.

5.5. Pull-push analysis

Pull-push analysis is a flow decomposition method, based on the superposition principle, that
examines the degree to which the structure of flows might be decomposed into a set of subflows
(Sonis 1980; Jackson et al. 1989), each of which acts according to extreme tendencies. That is,
a given flow matrix Y can be rewritten as a weighted sum of some extreme tendencies matrices:

1 1 2 2
1=

= = + + +∑ "
n

i i n n
i
p p p pY X X X X (18)

where 1 20 1≤ < < < ≤" np p p and
1

1
=

=∑
n

i
i
p

In this fashion, each extreme tendency can be written as a binary matrix describing the inter-
sectoral relationship in the hierarchy of decompositions. In the context of input-output, pull
analysis can show the backward linkage patterns in an economy, while push analysis reveals
the patterns of forward linkage patterns.

In PyIO, the push-pull analysis requires an input-output data that contains at the minimum the
two identifiers and transaction matrix. As usual, users will be prompted whether output in
Microsoft Excel is preferable. If so, a Microsoft Excel file will be automatically opened.

For the illustration below, we will use the datafile.txt in the push-pull analysis. For each
analysis, they will be written in four worksheets. Figure 11 shows the example of these
worksheets for pull analysis (the Microsoft Excel results for push analysis follows exactly the
same structure.) The first worksheet in the Excel file is named “Flow matrix” showing
different decomposed flow matrices according to the data set. The weight of each decomposed
flow is written under each decomposed flow matrix together with its cumulative weights (CP).
The maximum of each column in each decomposed matrix are presented in dash-bordered cells
in the matrix, and the minimum of the maximum (minimax) of the whole matrix is marked as
cells in red. The second worksheet is the “X-tendencies matrix” showing the
corresponding extreme tendency matrix for the decomposed flow matrix. Note that different
decomposed extreme tendency matrices are marked by different colors. The third worksheet
denoted as “Cumulative X” is the cumulative extreme tendency matrix, which is also colored
according to different decomposed levels. The fourth worksheet is “weights (p)”, showing
all the weights of the decomposed extreme tendency matrices.

27

Figure 13. Screen drops from pull analysis

If users do not prefer the Microsoft Excel results, then all of the results will be written in an
output text file. The structure of this output file will be similar to the above description.

28

5.6. Field of influence

The underlying idea of the field of influence is to assess the changes in the Leontief inverse
matrix resulting from the change in one or more direct input coefficients in the inverse Leontieof
matrix (i.e. total requirements matrix), research on the fields of influence applied to Input-Output
models was initiated by M. Sonis and G.J.D. Hewings in the series of publications started from
1988. At this stage of development, PyIO computes only the first order field of influence.

The first-order field of influence deals with a single change in one element of the coefficient
matrix A. For example, say that the changes take place at the element ija . The first order field

of influence [(,)]F i j , of the incremental change ije is an nxn matrix generated by a
multiplication of the j-th row of the matrix B with the i-th column (Okuyama et al. 2002):

() ()
1

1,
i

j jn

ni

b
F i j b b

b

 
 =    
 
 

… (19)

In the PyIO, after inputting the name of input-output text file, users will be asked to input the row
and column associated with the source of change. Note that the number of row and column, for
this purpose, starts from 1 (not 0). Users will also be prompted whether Excel output should be
written. Otherwise an output text file will be created. If the primary input-output is named
datafile.txt and the field of influence is computed for cell (3,8), then this output text file will
be named datafile_FOICell(3,8).out.

Reference:

Cella G (1984). The Input-Output Measurement of Interindustry Linkages, Oxford Bulletin of

Economics and Statistics 70: 705-12
Clements BJ (1990). On the Decomposition and Normalization of Interindustry Linkages,

Economics Letters 33: 337-340
Dietzenbache E, van der Linden JA, Steenge AE (1993). The Regional Extraction Method: EC

Input-Output Comparisons, Economic Systems Research 5: 185-206
Dietzenbacher E, van der Linden JA (1997). Sectoral and Spatial Linkages in the EC

Production Structure, Journal of Regional Science: 235-258
Feldman SJ, McClain D, Palmer K (1987). Sources of structural change in the United States

1963-1978: an input-output perspective, Review of Economics and Statistics 69: 503-
510

Jackson RW, Hewings GJD, Sonis M (1990). Decomposition Approaches to the Identification of
Change in Regional Economies, Economic Geography: 216-231

Lutz M (2001). Programming Python. O’Reilly

29

Miller RE, Blair PD (1985). Input-Output Analysis: Foundations and Extensions. Prentice-Hall
Okuyama Y, Hewings GJD, Sonis M, Israilevich P (2002). Structural changes in the Chicago

economy: A field of influence analysis. In: Hewings GJD, Sonis M (eds.) Trade, Network
and Hierarchies: Modeling Regional and Interregional Economies, Springer Verlag, pp,
201-224

Rasmussen P (1956). Studies in Inter_Sectoral Relations. Copenhagen, Einar Harks
Sonis M (1980). Locational Push-Pull Analysis of Migration Streams, Geographical Analysis

12: 80-97
Sonis M, Hewings GJD, Guo J (1997). Comparative analysis of China's metropolitan

economies: an input-output perspective. In: Chatterji M, Kaizhong Y (eds.) Regional
Science in Developing Countries. Basingstoke, Macmillan Press:147-162

___, (1996). Sources of Structural Change in Input-output Systems: A Field of Influence
Approach, Economic Systems Research 8:15-32

Sonis M, Hewings GJD (2004). Evolving Spatial Economic Structures: Input-Output Analysis
Perspectives (web-based manuscript in preparation)

Strassert G (1968). Zur Bestimmung Stretegischer Sektoren mit Hilfe von Input-Output-
Modellen, Jahrbucher fur Nationalokonomie und Statistik 182: 211- 215

30

Appendix: PyIO using functions

PyIO can also be used in the programming environment provided by Python. There are several
of these environments. Two easily accessed environments are the PythonWin and IDLE. Users
interested in using these environments can find further information about these in Python
documentation that are provided upon its installation. Here we will assume that users have had
sufficient background on these environments.

This environment is suitable for more advanced programmers who want to explore PyIO at a
technical level. One of the advantages of using the programming environment is the possibility
to (needless to say) program. One useful application is, for example, if one has series of tasks
on the input-output analysis. Rather than executing the analysis one by one through the
run_pyio.py, one can instead write another Python code that automatically execute the whole
tasks at once. This makes the whole analysis more efficient.

PyIO comprises a set of functions, written in the pyio.py file. The IDLE environment is easily
accessed by right clicking this file, and then click “Edit with IDLE”. Of course, Python must
be properly installed for that option to appear by right clicking. Two windows will appear, and the
active one will show the Python code. Users can run this code by clicking “Menu – Run
Script” or simply by pressing Ctrl-F5 simultaneously. Having done that, the second window
will become active, and users are ready to use PyIO functions at the prompt. We will discuss
these functions below, after showing how the other environment, i.e., PythonWin, can be called.

Once the Python is successfully installed, one can call PythonWin icon in the Windows Start
menu. Once it is loaded (look at the screen drop below in figure A.1), there are several ways to
load the PyIO module: (1) Run the module by clicking File-Run command menu as shown; (2)
Run the module by pressing Ctrl-R; or (3) Click the run icon (a person on the run) on the
menu bar. In all of these three ways, you will need to browse to the directory where the PyIO is
located, the same directory where you should put all of your input-output data files for analysis.
Detailed descriptions of the functions contained in PyIO are given in the subsequent section.

A typical example of a PyIO session using functions can be seen below. Let’s replicate the
example shown in section 2.4, calculating the output impact analysis. The same analysis can be
done by inputting the following command in the PythonWin (or IDLE) prompt:

 >>> ImpactAnalysis(‘datafile.txt’,‘sce.txt’)

Having entered the command, users will be prompted if they want the results printed in Excel.
When all result writing is done, users can see that an array is returned in PythonWin window.
The array is the result of computation. Given there are eight sectors and three final demand
scenarios in sce.txt, the ImpactAnalysis function returns an array of dimension 3x8. Look
at figure A.2. below.

31

Figure A.1. Opening Pythonwin and uploading (or, running) a module

Figure A.2. Typical session using PyIO functions

‘Run’ button

32

Also shown in figure A.2. is another way to carry out a PyIO session with function. Users can
actually assign a name to the output of a function. In the example above, the output of
ImpactAnalysis is stored in a variable named Result. This way, Python does not
automatically show the resulting array upon computation. Users can call the output by writing
down the name of variable. This Result is ready for further manipulation in Python.

The complete list of PyIO functions can be seen in table A.2. Typically, these functions require
the primary input-output data text file, and in some cases, together with the additional
information. Refer back to the earlier discussion about each of the analysis, for the appropriate
structure of the additional information text file.

In the above example, ImpactAnalysis only returns one output: an array of 3x8 dimension.
Some other functions return more than one output. To call such output, it is important to know
about indexing in Python, i.e., about how elements are placed in an array. Many times in Python,
we are dealing with lists or arrays, whose elements can be numbers or strings (letter or words).
The location of each element is marked by an index, which in Python starts with ‘0’. See an
illustration below:

>>> mylist = [9,6,2,5,7]
>>> mylist[0]
9
>>> mylist[3]
5
>>> mylist[-1]
7

The first syntax gives a very simple list, which is named mylist. The first element of mylist
is called by inputting the index ‘0.’ Note also that Python calls the last element of the list with an
index ‘-1.’ For further elaboration of indexing, readers may want to consult a more formal
Python documentation. Readers may want to get familiar with this indexing because in most
cases the functions in this module will return an array. Knowledge of this indexing will be
important to retrieve desired result from any array.

Therefore, coming back to our Result from figure A.2, users can write:

 >>> Result[1]

to get the vector of output impacts of the second scenario.

Some other functions in PyIO return a multiple array. For example, the AggregatingSector
function returns two items: new (aggregated) transaction matrix and new (aggregated) output
vector. Thus, if users want to carry out some aggregation and want to see just the new
transaction matrix, this can be done by the following:

 >>> result = AggregatingSector(‘io.txt’,’aggregating_info.txt’)
 >>> newmatrix = result[0]

The complete list of functions and items that are returned from PyIO functions can be seen in
table A.2.

33

Table A.1. Glossary of analysis, functions, and files in PyIO*

Name of analysis** Additional information

(in a text file)
Name of output file created*** Name of new input-

output data file
Table operations
1-1 Sectoral aggregations Sectoral aggregation info

(e.g., sec_agr.txt)
io_Aggregation.out io_new.txt

1-2 Spatial aggregations Regional aggregation info
(e.g., reg_agr.txt)

io_Aggregation.out io_new.txt

1-3 Updating table by RAS Sum of intermediate output (U), sum of
intermediate input (V), and total output (X)
(e.g., info.txt)

io_RASUpdate.out info_RAS.txt

1-4 Updating table by RSP Regional export, import, output
(e.g., reg_a.txt)

io_RSPUpdate.out reg_a_RSP.txt

1-5 Updating table by SLQ National, regional variable
(e.g., reg_b.txt)

io_SLQUpdate.out reg_b_SLQ.txt

Basic I-O Analysis
2-1 Leontief inverse (none) io_LeontInv.out (none)

2-2 Ghoshian Inverse (none) io_GhoshInv.out (none)

2-3 Impact Analysis Final demand scenario(s) (e.g., sce.txt) sce_Impact.out (none)

2-4 Output multiplier (none) io_OutMult.out (none)

2-5 Income multiplier Sectoral income (e.g., income.txt) io_IncMult.out (none)

2-6 Employment multiplier Sectoral employment (e.g., employ.txt) io_EmpMult.out (none)

2-7 Input (or supply) multiplier (none) io_InpMult.out (none)

Advanced I-O Analysis
3-1 Key sector analysis (none) io_KeySector.out (none)

3-2 Output change decomposition I-O data of different times
(e.g., io_t.txt & io_0.txt)

io_t_Decomp.out (none)

3-3 Multiplier product matrix (none) io_MPM(no. of years, benchmark
year).out

(none)

3-4 Extraction Method (none) none (none)

3-5 Pull analysis (none) io_Pull.out (none)

3-6 Push analysis (none) io_Push.out (none)

3-7 Field of Influence Cell position (e.g., (r,s)) io_FOICell(r,s).out (none)

Note: * Suppose that the input-output datafile is named io.txt; **Numbers preceding the name of analysis refer to those that users need to input

to get to that analysis; *** These files are created when users answer ‘no’ for results in Excel.

34

Table A.2. Glossary of analysis, functions, and returns in Python*

Name of analysis** Syntax to use in PythonWin or IDLE*** Returns
Table operations
1-1 Sectoral aggregations AggregatingSector(‘io.txt’,‘sec_agr.txt’) New transaction matrix and new output vector
1-2 Spatial aggregations AggregatingRegion(‘io.txt’,‘reg_agr.txt’) New transaction matrix and new output vector
1-3 Updating table by RAS UpdateRAS(‘io.txt’,‘info.txt’) New A matrix
1-4 Updating table by RSP UpdateRSP(‘io.txt’,‘reg_a.txt’) New A matrix
1-5 Updating table by SLQ UpdateSLQ(‘io.txt’,‘reg_b.txt’) New A matrix
Basic I-O Analysis
2-1 Leontief inverse LeontiefInverse(‘io.txt’) Leontief inverse matrix
2-2 Ghoshian Inverse GhoshianInverse(‘io.txt’) Ghoshian inverse matrix
2-3 Impact Analysis ImpactAnalysis(‘io.txt’,‘sce.txt’) Matrix of output impact
2-4 Output multiplier OutputMultiplier(‘io.txt’) Output multiplier
2-5 Income multiplier IncomeMultiplier(‘io.txt’,‘income.txt’) Income multiplier
2-6 Employment multiplier EmploymentMultiplier(‘io.txt’,‘employ.txt’) Employment multiplier
2-7 Input (or supply) multiplier InputMultiplier(‘io.txt’) Input multiplier
Advanced I-O Analysis
3-1 Key sector analysis KeySector(‘io.txt’) A list containing two sorted sector vectors according to descending

forward linkage and backward linkage respectively. Another list
containing two vectors of descending forward linkage and backward
linkage respectively.

3-2 Output change decomposition Decomposition(‘io_t.txt’,‘io_0.txt’) A matrix containing the decomposition parts in the following order:
decom_1, decom_2, decom_3, selfdecom_1, selfdecom_2,
selfdecom_3, nonselfdecom_1, nonselfdecom_2, nonselfdecom_3,
total

3-3 Multiplier product matrix MPMAnalysis(no. of years,benchmark year) List of sorted MPM (in their descending sector order), descending
row order, descending column order, number of sectors, unsorted
MPM. This list is stacked from the initial to the last years.

3-4 Extraction Method ExtractionMethod(‘io.txt’) Two matrices of extraction impact: backward linkage, forward
linkage

3-5 Pull analysis PullAnalysis(‘io.txt’) p-value vector
3-6 Push analysis PushAnalysis(‘io.txt’) p-value vector
3-7 Field of Influence FOI1(‘io.txt’, (r,s)) Field of influence matrix

Note: * Suppose that the input-output datafile is named io.txt; ** Numbers preceding the name of analysis refer to those that users need to input

to get to that analysis; *** Quotation marks to denote file names are required. See discussion in Appendix for more information about
functions in PyIO.

